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Motivating example: hydroelectric energy management

@ Need low-carbon energy to stop global warming

@ Hydroelectricity is a controllable renewable energy

@ 83% of electricity is hydroelectric in Brazil,
17% in France and 92% in Norway
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Motivating example: hydroelectric energy management

@ u water hustled
@ d demand uxa

¢ cost of unmet demand

Xo/x1 water in the reservoir
@ X capacity of the reservoir Xg fixed

@ w rain and runoff

Maél Forcier PhD Defense 14/12/2022 2/45



Motivating example: hydroelectric energy management

At step t

u; water hustled

d; demand

¢; cost of unmet demand
X water in the reservoir
X capacity of the reservoir

w; rain and runoff

T
min Z Ct(dt — Ut)
Ut Xt

t=1

s.t. 0< up < d; , Vte[T]
Xep1 < Xe — Ur + Wy thG[T]
0<x <X , Vte[T]
Xo fixed
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Motivating example: hydroelectric energy management

At step t

Maél Forcier PhD Defense

u; water hustled

d; demand

¢; cost of unmet demand
X water in the reservoir
X capacity of the reservoir

w; rain and runoff

General form

T
min Z Ct(dt — Ut)
Ut Xt

t=1

s.t. 0< up < d; , Vte[T]
Xey1 < X¢ — Up+wp , VEE [T]
0<x <X , Vte[T]
Xo fixed

min ¢! x
x€ERN

st. Ax<b
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Linear Programming and polyhedra

Definition
. T Polyhedron:
min ¢ x . ..
XERN Intersection of finite number of halfspaces
st Axsh The set P = {x € R" | Ax < b} of
admissible solutions is a polyhedron.
1 1 1 x1+x <1 (1)
(2)
®3)
A= b= (4)
(5)
(6)
()

=
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Linear Programming and polyhedra

Definition
. T Polyhedron:
X”gﬁ{‘n ©x Intersection of finite number of halfspaces
st Axsh The set P = {x € R" | Ax < b} of
admissible solutions is a polyhedron.
1 1 1 x1+x <1 (1)
1 _1 1 X1 — X2 < 1 (2)
3)
A= b= (4)
(5) o
(6)
(7)

=
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Linear Programming and polyhedra

Definition
. T Polyhedron:
Xné]'gnn ©x Intersection of finite number of halfspaces
st Axsh The set P = {x € R" | Ax < b} of

admissible solutions is a polyhedron.

1 1 1 x1+x <1 (1)

1 _1 1 X1 — X2 < 1 (2)

-1 -1 1 —x-x<1 (3)

A= b= (4)

(5)

(6)

(7)
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Linear Programming and polyhedra

Definition
. T Polyhedron:
X”gﬁQn ©x Intersection of finite number of halfspaces
<
st Axsh The set P = {x € R"| Ax < b} of
admissible solutions is a polyhedron.
<1 1
11 1 e (1)
1 _1 1 X1 — X2 g 1 (2)
-1 -1 1 -—x1—x <1 (3)
A= -1 1 b= 1 —x1+x <1 (4)
(5)
(6)
()
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Linear Programming and polyhedra

Definition
. T Polyhedron:
X”gﬁQn ©x Intersection of finite number of halfspaces
<
st Axsh The set P = {x € R"| Ax < b} of
admissible solutions is a polyhedron.
<1 1
11 1 e (1)
1 _1 1 X1 — X2 g 1 (2)
-1 -1 1 —-x-x<1 (3)
A= -1 1 b= 1 —x1+x <1 (4)
(6)
()
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Linear Programming and polyhedra

min  c'x

x€ER"

st. Ax<b

1 1 1
1 -1 1
-1 -1 1

A= -1 1 b= 1

1 0 0.5
0 1 0.5

Definition
Polyhedron:
Intersection of finite number of halfspaces

The set P = {x € R"| Ax < b} of
admissible solutions is a polyhedron.

x1+x <1 (1)
x1—x <1 (2)
—-x1—x <1 3)
—x1+x <1 (4
x1 <05 (5)

X <05 (6)

(7)

Maél Forcier PhD Defense 14/12/2022 3/45



Linear Programming and polyhedra

Definition
. T Polyhedron:
X”é]'R”n € x Intersection of finite number of halfspaces
.t <
st. Ax<h The set P = {x € R"| Ax < b} of
admissible solutions is a polyhedron.
<1 1
1 1 1 X1+ X2 (
1 -1 1 X1 — X2 g 1 (2
-1 -1 1 —x1—x <1 (3
A= -1 1 b= 1 —X]_+X2<1 (4
1 0 05 W <05 (5
0 1 0.5
x=-12 (7
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But renewables are inherently stochastic !

Rain, runoff, cost and demand are random.

-
At step t .
P min Z ci(de — ue)
@ u; water hustled S —
@ d; demand st.0< ur < dy , Vt e [T]
Xe41 S Xeg — U + W, Vte [T
@ ¢; cost of unmet demand s t ’ [7]
0<x <X , Vte[T]
@ x; water in the reservoir xo fixed

@ X capacity of the reservoir

@ w; rain and runoff
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But renewables are inherently stochastic !

Rain, runoff, cost and demand are random.

At step t . u
min E[Z c:(d; — uy ]
@ u; water hustled Xt =1
@ d; demand st.0<u < d; , YVt e [T]
< , Vte [T
@ c; cost of unmet demand Xerl S Xe — U W [7]
0< x <X , Vte[T]

@ x; water in the reservoir Xo = xo given
@ X capacity of the reservoir o(u)) Co(er,dryw,)rgy , Yt €[T]
w; rain and runoff o(xt) Co(er,dr,wr)rge , VE € [T]

Measurability constraints
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Multistage stochastic linear programming (MSLP)

-
min E [Z ctht}
t=1

(Xt)te[T]
s.t. Atxt + tht—l < bt YVt S [T]
O'(Xt) C O'(CT,AT,BT,bT)Tgt Vt € [T]

X0 = Xp given

&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.
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Multistage stochastic linear programming (MSLP)

(Xt)te[T]

T
min E [Z ctht}

t=1
s.t. Atxt + tht—l < bt YVt S [T]

O'(Xt) C O'(CT,AT, BT7 bT)Tét Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.
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Multistage stochastic linear programming (MSLP)

(Xt)te[T]

T
min E [Z ctht}

t=1
s.t. Atxt + tht—l < bt YVt S [T]

O'(Xt) C O'(CT,AT, BT7 bT)Tét Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

X0
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Multistage stochastic linear programming (MSLP)

(Xt)te[T]

T
min E [Z ctht}

t=1
s.t. Atxt + tht—l < bt YVt S [T]

O'(Xt) C O'(CT,AT, BT7 bT)Tét Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

xo ~ &1
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Multistage stochastic linear programming (MSLP)

(Xt)te[T]

T
min E [Z ctht}

t=1
s.t. Atxt + tht—l < bt YVt S [T]

O'(Xt) C O'(CT,AT, BT7 bT)Tét Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

X0 ~ &1~ x1
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Multistage stochastic linear programming (MSLP)

(Xt)te[T]

T
min E [Z ctht}

t=1
s.t. Atxt + tht—l < bt YVt S [T]

O'(Xt) C O'(CT,AT, BT7 bT)Tét Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

Xg ~> &1~ x1 ~ &2

Maél Forcier PhD Defense 14/12/2022 5/45



Multistage stochastic linear programming (MSLP)

-
min E [Z ctht}
t=1

(Xt)te[T]
s.t. Atxt + tht—l < bt Vt € [T]
O'(Xt) C O'(CT,AT,BT,bT)Tgt Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

X0~ &1~ xp v & v XT
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Multistage stochastic linear programming (MSLP)

-
min E [Z ctht}
t=1

(Xt)te[T]
s.t. Atxt + tht—l < bt Vt € [T]
O'(Xt) C O'(CT,AT,BT,bT)Tgt Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

Xg~> &1~ xp v o v s v xTop €T
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Multistage stochastic linear programming (MSLP)

-
min E [Z ctht}
t=1

(Xt)te[T]
s.t. Atxt + tht—l < bt Vt € [T]
O'(Xt) C O'(CT,AT,BT,bT)Tgt Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

X0~ &1~ xp v §o v s v X7 v T 0 XT
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Multistage stochastic linear programming (MSLP)

-
min E [ Z ctht}
t=1

(Xt)te[T]
s.t. Atxt + tht—l < bt Vt € [T]
O'(Xt) C O'(CT,AT,BT,bT)Tgt Vt € [T]

X0 = Xp given
&t = (€r, Ar, Bt, br)ic[1) is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

X0~ &1~ xp v §o v s v X7 v T 0 XT

Equivalent form

min o xi+E min c;—xz+]E[---+IE[ min C-—lr—XT]:|
x1:Arx1+Bixo< by x2:A2xa+Boxi < by xT:ATxT+Brxr_1<bT
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Dynamic Programming (Bellman 1966)

min o xi+E min c,) X —HE{--‘—i— IE[ min C;—I—XT]]
x1:A1x1+Bixo< by Xx2:Axx2+Boxy1 < by x7:Arxt+Brxr_1<brt

mlrl C;rXt + Vt+1(Xt)
We set V7,1 =0 and Vi(x,_1) :=E | %&"
s.t. AtXt + BtXt—]. g bt
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Dynamic Programming (Bellman 1966)

min o xi+E min c,) X —HE[---—HE[ min C;——XT}:|
x1:A1x1+Bixo< by Xx2:Axx2+Boxy1 < by x7:ArxT+Brxr_1<brt

Vr(x7r-1)

mlrl C;rXt + Vt+1(Xt)
We set V7.1 =0 and Vi(x,_1) :=E | X&"
s.t. AtXt + BtXt—]. g bt
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Dynamic Programming (Bellman 1966)

min ¢ x1+E min c;xz—i—IE[u-—i—IE[ min C;——XT]]
x1:A1x1+Bixo< by Xx2:Axx2+Box1 < by x7:Arxt+Brxr_1<brt
Vr(x7-1)
V3(X2)

mlrl C;rXt + Vt+1(Xt)
We set V7,1 =0 and Vi(x,_1) :=E | %E"
s.t. AtXt + BtXt—]. < bt
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Dynamic Programming (Bellman 1966)

min o xi+E min C2TX2—|—IE[~~+IE[ min C;——XT]]
x1:A1x1+Bixo< by Xx2:A2x2+Boxi < by x7:Arxt+Brxr_1<bt
Vr(x7-1)
V3(X2)

V2 (X1 )

mlrl C;rXt + Vt+1(Xt)
We set V7.1 =0 and Vi(x;_1) :=E |%E"
s.t. AtXt + BtXt—]. < bt
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Dynamic programming: finite case

Thank you Vincent for this animation.

=
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Dynamic programming: finite case

=
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Dynamic programming: finite case

time

=
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Dynamic programming: finite case

time

=
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time

=
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time
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Dynamic programming: finite case

time

=
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Dynamic programming: finite case

time

=
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Dynamic programming: finite case

X2
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case
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Dynamic programming: finite case

X2
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Dynamic programming: finite case

=
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Dynamic programming: finite case

time

= Continuous space: algorithms such as SDDP (discussed later).

=
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Dynamic programming: finite case

time

= Continuous space: algorithms such as SDDP (discussed later).
= How to deal with continuous distributions ? -
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Quantization of a MSLP

Real problem

. T
N min ¢y + Via(y)

Vi(x) = E[Vt(Xaft)] =k |yeR™
s.t. Aty + BtX < bt

&, continuous
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Quantization of a MSLP

Real problem
n rr1ig (th_)/ + Viga(
Vi(x) = E[Vt(x,ﬁt)] = [YER™
st. Ay + Bix <

Sample Average Approximation (SAA)
N
EDQA :E:: \/ )( 5

€. ¢N drawn by Monte Carlo (ex Shapiro 2011)

Maél Forcier PhD Defense
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b:

&, continuous

SAA N =20
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Quantization of a MSLP

Real problem
. min ¢y + Vipa(
Vt(X) = E[Vt(X,ft)] =E yeRn
st. Ay 4 Bix <

Sample Average Approximation (SAA)
N
SAA Z V X f
€. ¢N drawn by Monte Carlo (ex Shapiro 2011)

Partition-based

Vip(x) =Y BrpVe(x, & p)

PeP

with p; p := IP’[& S P] and fvt,P = E[ét‘gt € P]
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b.

&, continuous

SAA N =20

Partition-based
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Quantization of a MSLP

Real problem
. min ¢y + Vipa(
Vt(X) = }E[Vt(X,gt)] =E yeRn
st. Ay 4 Bix <

Sample Average Approximation (SAA)
N
SAA Z V X f
€. ¢N drawn by Monte Carlo (ex Shapiro 2011)

Partition-based

Vip(x) =Y BrpVe(x, & p)

PeP

with p; p := IP’[& S P] and fvt,P = E[ét‘gt € P]

y)

b.

&, continuous

SAA N =20

If & — V(x,€) is convex, Vi p(x) < Vi(x) (Jensen, Kuhn) Partition-based

Maél Forcier PhD Defense
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Exact quantization

Definition
A MSLP admits a local exact quantization at time t on x if there exists a
finitely supported (&:)¢c[7] such that

Vi(x) = E[Vt(x7€t)] =K [\A/t(X;ét)]-
We call an exact quantization

@ uniform if it is locally exact at all x € R™, and all t € [T].

@ universal if there exists a partition P; x such that the induced
quantization is exact at time t on x, for all distributions of (£;).¢[7]-

&: continuous £; quantized
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Conditions for the existence of an exact quantization ?
Assume Vi1 = 0 and denote V := V4, V =V, and £ = &; for now.

. min cTy
V(x) :E[V(X,E)] =FE [V~
st. Ay+Bx<b

We have an exact quantization if and only if there exists a finitely
supported noise & such that

E[V(x,£)] = E[V(x,£)].

A |[(B,b)| ¢
Local ? ? ?

Uniform ? ? ?

Maél Forcier PhD Defense 14/12/2022
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A first counter example
A |((B,b)| ¢

Local ? ? ?

Uniform ? ? ?

Let A= (—u), B=(0), b= (—1) where u ~1([1,2]).

. min vy 1
V(X7€) = yeR = E
st. wuy>1
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A first counter example

A |((B,b)| ¢

Local ? ? ?

Uniform ? ? ?

Let A= (—u), B=(0), b= (—1) where u ~1([1,2]).

R min vy 1
st. wuy>1 Y
By strict convexity, for all partition P
N 1
Z ﬁpV(X,ﬁp) < V(x) = E[—]

PeP Y
with pp =P[¢ € P, Ep =E[€] & € P].
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A first counter example

A |((B,b)| ¢

Local ? ? ?

Uniform ? ? ?

Let A= (—u), B=(0), b= (—1) where u ~1([1,2]).

R min vy 1
st. wuy>1 Y

By strict convexity, for all partition P
Ny 1
Z Bp V(X,gp) < V(x) = E[—]
u
PeP
with pp =P[¢ € P, Ep =E[€] & € P].

= There is no partition-based (local, uniform or universal) exact
quantization result for A non-finitely supported.

Maél Forcier PhD Defense 14/12/2022 11/45



A first counter example
A |((B,b)| ¢

Local % ? ?

Uniform ® ? ?

Let A= (—u), B=(0), b= (—1) where u ~1([1,2]).

R min vy 1
st. wuy>1 Y

By strict convexity, for all partition P

Z Bp V(X,gp) < V(x) = E[l]

PeP Y
with pp =P[¢ € P, Ep =E[€] & € P].
= There is no partition-based (local, uniform or universal) exact

quantization result for A non-finitely supported.

= From now on, A is deterministic: fixed recourse.
14/12/2022  11/45



Uniform exact quantization and polyhedrality

\7x, = min ¢’
(x,§) = min 'y

st. Ay+Bx<b

.‘»c
P

y
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Uniform exact quantization and polyhedrality

\7X, = min ¢’
(x,§) = min 'y

st. (x,y)e P

.‘»c
P

y
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Uniform exact quantization and polyhedrality

v &) =min ¢!
(x,§) = min 'y

sit. (x.y)e P

epi(Q°)

i 13
= min Q%(x,
y€eRm ( }/)

with Q*(x,y) :==c'y + 1. ,)-p.

. — C
P

y
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Uniform exact quantization and polyhedrality

v &) =min ¢!
(x,§) = min 'y

sit. (x.y)e P
= min Qg(x,y) epi (\A/(’f))
y€eRm

epi(Q°)

N

with Q*(x,y) :==c'y + 1. ,)-p.

\7(-,5) is polyhedral because
epi (V(+,€)) is the projection of
epi(Q°).
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Uniform exact quantization and polyhedrality

. 1

V(x,€) =min c'y epi( Q)
sit. (x.y)e P

= min Q%(x,y) epi (

A

N

with Q%(x,y) == cTy + I )cp.

\7(-,5) is polyhedral because
epi (V(+,€)) is the projection of
epi(Q°).

V(X) =K [V(Xa E)] = ZEEsupp(é) pf V(Xa 5)
= |f the noise is finitely supported, then V is polyhedral
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Uniform exact quantization and polyhedrality

. 1

V(x,€) =min c'y epi( Q)
sit. (x.y)e P

= min Q%(x,y) epi (

A

N

with Q%(x,y) == cTy + I )cp.

\7(-,5) is polyhedral because
epi (V(+,€)) is the projection of
epi(Q°).

V(X) =K [V(Xa E)] = desupp(é) pf V(Xa 5)
= |f the noise is finitely supported, then V is polyhedral

= Existence of uniform exact quantization implies
polyhedrality of V.
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Counter examples with stochastic constraints
A |((B,b)| ¢

Local X ? ?

Uniform X ? ?

u is uniform on [0, 1] &
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Counter examples with stochastic constraints

A |((B,b)| ¢
Local X ? ?
Uniform X ? ?
Stochastic B | min y
y€ER™
V(x)=E | st. ux—y <0
y=>1

u is uniform on [0, 1]
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Counter examples with stochastic constraints

A |((B,b)| ¢
Local X ? ?
Uniform X ? ?
Stochastic B [ min y Stochastic b min y
y€ER? y€ER™
VX)) =E | st ux— y <0 V(x)=E | st. y>u
y=21 x—y<0
= E [ max(ux, 1)] = E [ max(x, u)]
1 if x<1 % if x<0
Ti4L x>t ={2 i xeo,1]
X ifx>1

u is uniform on [0, 1]
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= V/ is not polyhedral = No uniform exact quantization for non—flnitely

supported B and b.

u is uniform on [0, 1]

Maél Forcier PhD Defense

14/12/2022  13/45



Counter examples with stochastic constraints

A |((B,b)| ¢
Local X ? ?
Uniform X b ?
Stochastic B [ min y Stochastic b min y
y€ER? y€ER™
VX)) =E | st ux— y <0 V(x)=E | st. y>u
y=>1 y<0
= E [ max(ux, 1)] =E|
1 if x<1 % if x <
3+ A ifx>1 il ﬁxemﬂ
if x >

= V/ is not polyhedral = No uniform exact quantization for non—flnitely

supported B and b.

u is uniform on [0, 1]

Maél Forcier PhD Defense

14/12/2022  13/45



Remaining cases

A (B, b) c

, T
Vi) =k e Local | x | ? | 7
st. Ay+Bx<b Uniform X X ?

=
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Remaining cases

A | (B,b)| ¢

, T
Vo) <E [ © 7 local | x | 7 | ¥
st. Ay+Bx<b Uniform X X 4

Theorem (FGL 2021)

If A, B and b are deterministic,
then there exists a universal and uniform exact quantization.
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Remaining cases

A | (B,b)| c

. T
V(x)=E yrg]kr’\ﬂ cy Local X v v

st. Ay+Bx<b

Uniform X X ve

Theorem (FGL 2021)

If A, B and b are deterministic,
then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic,
then there exists a universal and local exact quantization.
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,




Reformulation of V/(x) highlighting the role of the fiber P,

For a given x, (we still assume V11 =0)

min cTy

V(x):=F [YER"
st. Ay+Bx<b

V(x)=E[minc'y] where P,:={yeR"|Ay+ Bx<b}

yEePy
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x, (we still assume Vi1 = 0)
min cTy
V(x):=F [YER"
st. Ay+Bx<b

V(x)=E[minc'y] where P i={y€R"|Ay+Bx<b}
YEePx

Illustrative running example:

Pei={y eR" ||yl <1,
i g X, Y2 < X}
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of P aty.

X2
A
l
:
! - ---> X1
-___’.___>_C1 ‘
l
l
|
' 1

Np (y) for x =10.3

Py, y and Np (y) for x =0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of P aty.

4

-———I—'—» —C1

Np (y) for x =10.3

Py, y and Np (y) for x =0.3
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is
N(Ps) :={Np.(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of P aty.

Py, y and Np (y) for x =0.3
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of P aty.

Np (y) for x =10.3
Py, y and Np (y) for x =0.3
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Normal fan N(P;)
Definition

The normal fan of the fiber P, is
N(Px) :={Np.(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of P aty.
Proposition

If P is bounded, {ri(N) | N € N'(P.)} is a partition of R™.

P, and N (Py) for x =0.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).
y€ePx

A
1
1
1
1

Cost —c and NV (Py) for x = 0.3

4
l
|
|

P, for x =10.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).

yePx
X2
__;:2 ? e
Cost —c and NV (Py) for x = 0.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).
y€ePx

4
| N\
1 1
1
1
1

Cost —c and N(Py) for x = 0.3

---> X1

P, for x =10.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).

yePK
X2
—o RN
4 |
Cost —c and N(Py) for x = 0.3
P, for x =10.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).

yePK
X2
—o !
A C
Cost —c and N(Py) for x = 0.3
P, for x =10.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).
y€ePx

A

1
>T:' —a

1
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1
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N(Py): partition of cost coherent with the min

V(x) = E[yrgillg cly]

For any N € N(Py), —c = argminc'y is constant for all —c € ri(/V).

yGPx
X2
—a !
4 !
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N(Py): partition of cost coherent with the min

V(x) = E[yn;ilg cly]

For any N € N(P,), —c + argminc'y is constant for all —c € ri(/V).
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Local and universal exact quantization for ¢

V(x) =E[ min c'y]

yEPx
= Z IE[]lce—riN min CTy]
YyEPx
NeN (Px)
4
N(Py) for x =0.3
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Local and universal exact quantization for ¢

V(x) =E[ min c'y]

yGPx
. . T . T
- Z E[]lce—riNy”;'anc y] where yy(x) € arg mingecp, C Y.
NEN (Px) e—riN
= Y Eflecnneyn(x) o
NEN(Py) 4
N(P,) for x=0.3
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Local and universal exact quantization for ¢

V(x)=E [yn;ilg c'y]

= Z IE[]lce_riNyrgian cTy] where yy(x) € argmin,cp ¢’y

<~
NEN (Py) c—riN
= Z E[]lce—riNCT]YN(X)
NeN(Py)
= Z prnén " yn(x)
NeN (Py)

N(P,) and pyé&y for x = 0.3

For N € N(Px),
We replace the continuous cost c,
PN = P[C €—ri N} by the discrete cost €.
in=E[c|ce—riN]|
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Local and universal exact quantization for ¢

V(x)=E [yn;ilg c'y]

= Z IE[]lce_riNyrgian cTy] where yy(x) € argmin,cp ¢’y
NeN (Px) E—riN

= Z E[]lce_riNCT]YN(X)

NeN(Py)

= Z pnen ! yn(x)

NeN (Py)

= > pvminéy'y
yEPx

NeN(Py)

pnéy for x = 0.3

For N € N(Px),
We replace the continuous cost c,
PN = P[C €—ri N} by the discrete cost €.
in=E[c|ce—riN]|
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2
A
Y2
- '
A |
_ . - —c “t----e N
N(P,) P, and NV (Py)
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2
A
y2
—o '
A |
_ o= - —C1 - +----e )1
N(P,) P, and NV (Py)

P and P,
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2

A

y2

P and P,
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y|Ay+Bx < b} and P:={(x,y)|Ay+ Bx < b}

Y2
A
2 :
) !
% 1
.--}_, —C 4 __".y].
N(P,) P, and NV (Py)
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y|Ay+Bx < b} and P:={(x,y)|Ay+ Bx < b}

2
4
X2 :
-0 4
4
N(Py) P, and N (P,)
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y|Ay+Bx < b} and P:={(x,y)|Ay+ Bx < b}
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x is no longer fixed but x — N(Py) is piecewise constant.

Po:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2

A

A
[
I
I
-__X__> _Cl *yl
I
I
I

N(PX) x=14
P and P,
Maél Forcier
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y|Ay+Bx < b} and P:={(x,y)|Ay+ Bx < b}

Y2
A
2 :
) !
% 1
.--}_, —C 4 __".y].
N(P,) P, and NV (Py)
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2

A

y2
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2
A
2 :
- '
+ |
/T_,, L ——E;F————»n
N(P,) P, and NV (Py)

P and P,
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x is no longer fixed but x — N(Py) is piecewise constant.

Pe:={y | Ay +Bx < b} and P :={(x,y)| Ay + Bx < b}

Y2
A
Y2
- '
A |
_ o= - —C1 y “t----e N
N(P,) P, and NV (Py)
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What are the constant regions of x — N (Py) ?

Proposition

There exists a collection C(P, )
called the chamber complex whose
relative interior of cells are the
constant regions of x — N(Py).

l.e, for o € C(P,7) and x,x" € ri(c), we
have N(Px) = N(Py) =: N

—Q —C

A A

] ]
.--;}—»—» —C1 -——Xv—» _Cl

| |

I I

N, for 0 =[-05,0] N, for 0 =[0,0.5] N, foro =1[0.5,1 AN, for o =[1,+c0)
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Chamber complex

o : y lw
Definition (Billera, Sturmfels 92)

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x €n(P)}
where

opr(x) = ﬂ w(F) N

FEF(P) | xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x.

=
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Chamber complex

o : y lw
Definition (Billera, Sturmfels 92)

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x €n(P)}

where
opr(x) = ﬂ w(F) N
FEF(P) | xen(F)
where F(P) is the set of faces of P
and 7 is the projection (x,y) — x.
(=3
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Chamber complex

y
Definition (Billera, Sturmfels 92)
The chamber complex C(P, ) of P !
along 7 is
C(P,7) == {op~(x) | x € w(P)} Px
where
[ ]
opr(x) = ﬂ w(F)

FEF(P) | xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x.
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Chamber complex

y
Definition (Billera, Sturmfels 92)
The chamber complex C(P, ) of P !
along 7 is
C(P,7) = {op(x) | x € T(P)} Px
where
[ ]
opr(x) = ﬂ w(F)

FEF(P) | xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x.
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Chamber complex

o : y lw
Definition (Billera, Sturmfels 92)

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x €n(P)}
where

opr(x) = ﬂ w(F)

FEF(P) | xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x.

=
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Common Refinement of Normal Fans
We can quantize ¢ on each chamber.

! For all x € ri(o), For all X’ € ri(7),

V(x)=>_ puminéyy V()= puminéuy |
NeNs NeN; N and ¢
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Common Refinement of Normal Fans
We can quantize ¢ on each chamber.

A
[

V(x) = Z pymin &y V(X)) :Z pn min &Ly
Nen, V< Nen, V<P

No

We take the common refinement:

R:=N, AN, ={NNN|NeN,,N €N;}

.__%_ For all x € ri(U) U I’i(T),

| V(x)= ) pnmineyy
' y€ X
N(r /\NT NENGANF
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Common Refinement of Normal Fans
We can quantize ¢ on each chamber.

A
[

E meln vy V(X)) = E mem vy
P
NeNs NeN-

No

We take the common refinement:
R:=N,AN; ={NNN|NeN,,N €N;}

.__%_ For all x € ri(a) Uri(7),

| %
: () =)_pnmin &uy
R NeR
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N-
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Uniform exact quantization for ¢

Let's sum up:
@ local exact quantization at x induced by N(Px),
e x — N(Py) is constant on each o € C(P, ),
o local exact quantization at ri(o) induced by N,

o local exact quantization at ri(o) U ri(7) induced by Ny A N
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Uniform exact quantization for ¢

Let's sum up:
@ local exact quantization at x induced by N(Px),
e x — N(Py) is constant on each o € C(P, ),
o local exact quantization at ri(o) induced by N,

o local exact quantization at ri(o) U ri(7) induced by Ny A N

Theorem (FGL21, Uniform and universal quantization of the cost)

Let R= A\ —N,, then for all x € R"
o€eC(P,m)

V(x) = Sk min &p
(x) ,;szyer RY
where pr :=P[c € ri(R)] and & :=E|[c| ¢ € ri(R)]
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Polyhedral characterization of V
Theorem (FGL 2021) J

For all distributions of ¢, V is affine on each cell of C(P, ).

=
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Polyhedral characterization of V
Theorem (FGL 2021)

For all distributions of ¢, V is affine on each cell of C(P, ).

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

V(x) =oe(b— Bx) = iug(b —Bx)"A
€
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Polyhedral characterization of V
Theorem (FGL 2021)

For all distributions of ¢, V is affine on each cell of C(P, ).

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

V(x) =oe(b— Bx) = iug(b —Bx)"A
€

where E = J J DcP(dc) is the weighted fiber polyhedron
and D, := {)\ |A"XA 4 c =0} the dual admissible set.

The weighted fiber polyhedron is a Minkowski integral with respect to the

distribution dP(c)

~~ extension of fiber polytope (uniform distribution) of

@ L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527-549, 1992.
14/12/2022  25/45



Explicit computation of the example

Y2
~ _ 41
min c'y *
ycR2 :
Vix)=E | st llyllh<1
y1 <X
| y2 < x|

X Different distributions of c:
uniform on norm 1 ball

uniform on norm 2 ball
nifosm on norm [l
uilfgﬂg on norm oo ba

e 27

2793 ]
Cal 7 Ldc
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Multistage uniform and universal exact quantization
epi(Qt)

epi( Vit1)

min ctTy + (v)
yER™
Vi(x) =E
st (x,y) € P,
with Q:(x,y) := + Iix,y)er, -

Maél Forcier

PhD Defense

K/

/ wY7 (epi(Qr))




Multistage uniform and universal exact quantization
epi(Qt)

epi( Vit1)

s.t. (X7y7 )G ePi(Ql’)

with Q:(x,y) :=

Maél Forcier

+ ]I(ny)epr-

PhD Defense
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/ wY7 (epi(Qr))




Multistage uniform and universal exact quantization

min ¢ y+z epi(Q:)
Vi(x) =E | zer epi(Vita)
st. (x,y,2) € epi(Qr)

with Q:(x,y) := + Lxy)er, -
= V/; affine, x — N(Py) constant - -
on C(epi(Qy), m%)
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Multistage uniform and universal exact quantization

min ¢ y+z epi(Q:)
Vi(x) =E | zer epi(Vita)
st. (x,y,2) € epi(Qr)

with Q:(x,y) := + Lix,p)er, -

= V/; affine, x — N(Py) constant - -
on C(epi(Qy), m%)

A\ epi(Q;) appears in the constraint
and depends on ¢y, , €7 !

c(epmon P
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Multistage uniform and universal exact quantization

min ¢ y+z epi(Q:)
Vi(x) =E | zer epi(Vita)
s.t. (x,y,2) € epi(Q:)

with Q:(x,y) := + Iix,y)er, -

= V/; affine, x — N(Py) constant
on C(epi(Qy), m%)

A\ epi(Q;) appears in the constraint
and depends on ¢y, , €7 !

affine on P11 (by assumption)
Q= (Rnt X Pt+1) /\f(Pr)

W

X
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Multistage uniform and universal exact quantization

min ¢ y+z epi(Q:)
Vi(x) =E | zer epi(Vita)
s.t. (x,y,2) € epi(Q:)

with Q:(x,y) := + Iix,y)er, -

= V/; affine, x — N(Py) constant
on C(epi(Qy), m%)

A\ epi(Q;) appears in the constraint
and depends on ¢y, , €7 !

affine on P11 (by assumption)
Qt = (]Rnt X PH»I) /\f(Pt)
Pr = C(Qs, Y
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Multistage uniform and universal exact quantization

min ¢ y+z epi(Q:)
Vi(x) = E | zer epi(Vii1)

s.t. (x,y,2) € epi(Q:)

with Q:(x,y) := + Iix,y)er, -

= V/; affine, x — N(Py) constant
on C(epi(Qy), m%)

A\ epi(Q;) appears in the constraint
and depends on ¢y, , €7 !

affine on P11 (by assumption)
Qt = (]Rnt X Pt+1) /\f(Pt)
Pr = C(Qs, Y

[FGL21, Lem. 4.1]: P; < C(epi(Q:), m5¥+%)
w V/; affine on P;, N(Py) constant on P,
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Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

Pre 1= C((R™ x Paya) A F(PH(E)), w2
Pt = /\ Pt,g

EeEsupp &t
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Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

Pre 1= C((R™ x Paya) A F(PH(E)), w2
Pt = /\ Pt,g

EeEsupp &t

Theorem (FGL 21)

All results generalizes to MSLP with finitely supported stochastic
constraints.

= (V4); are affine on universal chamber complexes,
i.e. independent of the law of (¢;):

w e have an uniform and universal exact quantization.
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Earlier and new complexity results
Volume of a polytope

Vol ({z € RY| Az < b}) or
Vol (Conv(vy, -+, vn))

o fP-complete:
Dyer and Frieze (1988)

@ Polynomial for fixed dimension
d: Lawrence (1991)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem
d min c;y
Vol ({z € RY| Az < b}) or minncirx L E |verR”
Vol (Conv(vy, -+, vn)) x€R s.t. Aoy + Box < by
s.t. Aix < by

o fP-complete: @ fP-hard: Hanasusanto, Kuhn
Dyer and Frieze (1988) and Wiesemann (2016)

@ Polynomial for fixed dimension @ Polynomial for fixed m ?
d: Lawrence (1991)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem
d min c;y
Vol ({z € RY| Az < b}) or minncirx L E |verR”
Vol (Conv(vy, -+, vn)) x€R sit. Aoy + Box < by
s.t. Aix < by

o fP-complete: @ fP-hard: Hanasusanto, Kuhn

Dyer and Frieze (1988) and Wiesemann (2016)
@ Polynomial for fixed dimension @ Polynomial for fixed m:
d: Lawrence (1991) FGL (2021)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem
d min c;y
Vol ({z € RY| Az < b}) or minc x + I |YER"
Vol (Conv(vy, -+, vn)) x€R" sit. Aoy + Box < by
s.t. Aix< b

o fP-complete: @ fP-hard: Hanasusanto, Kuhn
Dyer and Frieze (1988) and Wiesemann (2016)

@ Polynomial for fixed dimension @ Polynomial for fixed m:
d: Lawrence (1991) FGL (2021)

~ Exact case
~~ Approximated case
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)
Assume that T, ny,--- ,nr, are fixed.!

Assume that ¢ admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an c-solution® in polynomial
time in Iog(%) with probability 1.

'No requirement for the first decision.
20r asserts that MSLP is unfeasible.

Maél Forcier PhD Defense
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)
Assume that T, ny,--- ,nr, are fixed.!

Assume that ¢ admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an c-solution® in polynomial
time in log(%) with probability 1.

w Can be adapted to exact complexity when we can compute exactly
E [C‘C € C, (At7 Bt7 bt):(A, B7 b)] and IP[C S C|(At, Bt7 bt):(A, B, b)] .

No requirement for the first decision.
20r asserts that MSLP is unfeasible.
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, ny,--- ,nr, are fixed.!
Assume that ¢ admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an c-solution® in polynomial
time in Iog(%) with probability 1.

w Can be adapted to exact complexity when we can compute exactly
E [C‘C € C, (At7 Bt7 bt):(A, B7 b)] and P[C S C|(At, Bt7 bf): (A, B, b)] .

Proof based on ellipsoid (Grostchel, Lovasz, Schrijver) =
and upper bound theorems (McMullen, Stanley) s

By SAA, we can solve MSLP, up to precision ¢, in pseudo-polynomial time,
i.e. polynomial in % with probability 1 — «, when T, ny,--- , ny are fixed.

'No requirement for the first decision.
20r asserts that MSLP is unfeasible.
iz s
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9 Local and universal exact Quantization for constraints in 2-stage
@ Adapted partitions
@ Adaptive Partition-based Methods
@ Convergence, complexity and numerical results
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Local exact quantization for constraints 7

Back to the 2-stage problem

A |((B,b)| ¢
Local X ? v
Uniform X X v

=
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Local exact quantization for constraints 7

Back to the 2-stage problem

A |((B,b)| ¢
Local X ? v
Uniform X X v
Duality result
min ¢y max (Bx — b)TA
V(x) = E[V(x,£)] = E |7 _E [reR
st. Ay+Bx<b st. ATA+c=0
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Local exact quantization for constraints 7

Back to the 2-stage problem

Local X ? v
Uniform X X v
Duality result
min ¢y max (Bx — b)TA
V(x) =E[V(x,&)] =E |<¥ =B | K
st. Ay+Bx<b st. ATA+c=0

= Back to the case with random cost
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Local exact quantization for constraints 7

Back to the 2-stage problem

Local X ? v
Uniform X X v
Duality result
min ¢y max (Bx — b)TA
V(x) =E[V(x,&)] =E |<¥ =B | K
st. Ay+Bx<b st. ATA+c=0

= Back to the case with random cost

/\ The new cost depends on x: only local exact quantization.
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Local exact quantization for constraints

Random cost
Recall that for a fixed x,

V(x)=E [yn;i’r; c'y]

where,

PN :=P[c€—riN]
etv:=E[c|ce—riN]

Py :={y e R™| Ay 4+ Bx < b}

Maél Forcier PhD Defense
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Local exact quantization for constraints

Random cost
Recall that for a fixed x,

V(x) =E[ min CTy]

yePy
= > puminéy'y
€EPx
NEN(Py) 4

where,

PN :=P[c€—riN]
&v:=E[c|ce—riN]

Py :={y e R™| Ay 4+ Bx < b}

Random constraints
Similarly, for a given ¢ and x,

V(x) =E[ max (b— BX)T)\]

AeDc
_ T)\
- PN ,x Max ¢N7x
AeD.
NeN(Dc)

where,

PN, x ::P[b— Bx cri N]
Unx :=E[b—Bx|b—BxeriN|

De:={AeR |ATA+c=0}
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Partitioned cost-to-go functions (recalls)

&; continuous

V(x) =E [V(x, 5)]

Maél Forcier PhD Defense

£, partitioned
Vp(x) = Y pep P[PV (x, E[£]P])

14/12/2022
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Partitioned cost-to-go functions (recalls)

o
£, continuous £, partitioned
V(x) =E[V(x,6)] Ve(x) = Ypep B[P]V (x. E[€]P])
o V(x,-) is convex V(x)
- Vo V.
o V(-,E[€|P]) is polyhedral Vp(x)
w /5 is polyhedral.
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Adapted partition K

Definition
A partition P is adapted to xq if

Vp(x) = V(x0) :=E[V(x0,&)]

'Can be extended to generic random ¢ and finitely supported A
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Adapted partition

Definition
A partition P is adapted to xp if

Vp(x) = V(x0) == E[V(x0, )]

1
!
|
| » X
X0

Consider x € R” and N € N(Dg) a normal cone of D,. We define
Enx ={£€=|b—BxerilN}

Theorem (FL 2021)

Ry = {Enx | N €N (Dg)} is adapted to x i.e. Vg (x)= V()
In particular: if only B and b are stochastic,
then there exists a universal and local exact quantization® .
Bonus: necessary and sufficient condition for a partition to be adapted

'Can be extended to generic random ¢ and finitely supported A

Maél Forcier PhD Defense 14/12/2022 34 /45



Contents

© Local and universal exact Quantization for constraints in 2-stage

@ Adaptive Partition-based Methods

=

Maél Forcier PhD Defense



General framework for Adaptive Partition-based Methods

PO+ {=};
for k=1---00do

Let x* be an optimal solution mi)rg o x4+ Vpiea(x) ;

xX€

Let P,« a partition adapted to x¥ ;

Pk P AP ;
end

Algorithm 1: General framework for APM.
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General framework for Adaptive Partition-based Methods

PO+ {=};
for k=1---00do

Let x* be an optimal solution mi)rg o x4+ Vpiea(x) ;

xX€

Let P,« a partition adapted to x¥ ;

Pk P AP ;
end

Algorithm 1: General framework for APM.

LT
V,
min ¢; x + Vp(x)

is equivalent to

min clTx—l— ZIP’[P]CQTyp
x€X,(yp)per pep

Ayp +E[B|P]x <E[blP] ,VPeP
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A (partial) comparison between partition based results

Paper Song, Luedtke | Ramirez-Pico, FL
(2015) Moreno (2020) | (2021)

Non-finite supp(&) X v v

Explicit oracle v X v

Proof of convergence v X v
Complexity result X X v
Fast iteration v X X

14/12/2022
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

V(x).
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

X1 X1
»»»»»»»»»»»»»» —_— e X e e e X
X1 X0 X1 X0
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

V(x)a V(x).

X X

[ > X

Theorem (Convergence and complexity results)

If X "dom(V) C R* is contained in a ball of diameter M € R™ and
x — ¢f x + V/(x) is Lipschitz with constant L

then the partition based method finds an e-solution in at most (% + 1)"
iterations.
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Numerical Results - ProdMix

k Xk zf zf; Gap | [P
1 | (1333.33,66.67) | —18666.67 | —16939.71 | 9.3% 4
> | (1441.41,59.57) | —17873.01 | —17383.73 | 2.7% | O
3 | (1399.05,57.91) | —17789.88 | —17659.19 | 0.74% 16
4 | (1379.98,56.64) | —17744.67 | —17708.00 | 0.20% | 25
5 | (1371.36,55.71) | —17718.96 | —17709.05 | 0.056% 36
6 | (1375.55,56.21) | —17713.74 | —17711.37 | 0.013% 49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100
times, each with 10 000 scenarios randomly drawn, yielding a 95%
confidence interval centered in —17711, with radius 2.2.
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History of stochastic dual dynamic programming (SDDP)

@ Designed by Pereira and Pinto in 1991, used to manage brazilian
hydroelectricity network

@ Proof of asymptotic convergence in the linear case (Philpott and Guan
2008) and in the convex case (Girardeau, Leclére, Philpott 2015)

e Complexity proof (Lan 2020, Zhang and Sun 2022)

@ Plenty of variants: trajectory following dynamic programming
algorithms

= All with finitely supported distribution
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Trajectory Following Dynamic Programming

X2

time

Thanks again Vincent ! -
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Trajectory Following Dynamic Programming
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Contributions on SDDP and its variants

w New framework called Trajectory Following Dynamic Programming
(TFDP) encompassing at least 14 variants of SDDP

w Complexity proofs, new for most of those variants
= Do not require finite support assumption
= Allow approximation error

w Adapt to robust and risk averse cases
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Some TFDP algorithms

Algorithm'’s Node selection: Complexity
name Choice &f Ft vk Vf Hypothesis known
SDDP Random sampling Exact Benders cuts Ve Convex v
EDDP Explorative Exact Benders cuts V¢ Convex (4

APSDDP Random sampling Exact Adaptive partition Ve Linear ®
SDDiP Random sampling Exact Lagrangian or integer cuts Ve Mixed Integer Linear x
MIDAS Random sampling Exact Step cuts Vi Monotonic Mixed Integer x
SLDP Random sampling Exact Reverse norm cuts Ve Non-Convex ®
BDZ17 Problem child Exact Benders cuts Epigraph as convex hull Convex x
BDZ18 Problem child Exact Benders x Epigraph Hypograph x Benders Convex-Concave x
RDDP Deterministic Exact Benders cuts Epigraph as convex hull Robust x
ISDDP Random sampling Inexact Inexact Lagrangian cuts Ve Convex x
TDP Problem child Exact Benders cuts Min of quadratic Convex x
7519 Random or Problem | Regularized | Generalized conjugacy cuts Norm cuts Mixed Integer Convex v
NDDP Random or Problem | Regularized Benders cuts Norm cuts Distributionally Robust 4
DSDDP Random sampling Exact Benders cuts Fenchel transform Linear x

T
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Conclusion

A [(B,b)| ¢
Local X v v

Uniform X X v

@ Links with fundamental polyhedral geometry, regular subdivisions and
fiber polytope (Chap. 3 and 4).
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Conclusion

A | (B,b)| c
Local X v v
Uniform X X v

@ Links with fundamental polyhedral geometry, regular subdivisions and

fiber polytope (Chap. 3 and 4).

e Uniform and universal exact quantization for ¢ in MSLP (Chap.4).

= Polynomial time complexity results.

@ Local exact quantization for B and b.

= Adaptive Partition-based Methods (APM) for general distribution:

solves small 2SLP with high precision (Chap. 5).

@ Extension of Stochastic Dual Dynamic Programming algorithms and
more generally all Trajectory Following Dynamic Programming
algorithm for non finitely supported distribution (Chap. 6).
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Perspectives (Chap. 7)

Higher order simplex algorithm on the chamber complex for 2SLP,

@ 2-time scale MSLP, nested fiber polyhedra and convex bodies,

Reintroduce approximation or sampling,

@ Exact quantization for stochastic integer linear problems,

Understanding the complexity of MSLP.
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Thank you for listening ! Any question ?
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