Multistage stochastic optimization and polyhedral geometry

PhD Defense Maël Forcier

advised by Stéphane Gaubert and Vincent Leclère, supervised by Jean-Philippe Chancelier.

December 14th 2022

École des Ponts
ParisTech

Motivating example: hydroelectric energy management

- Need low-carbon energy to stop global warming
- Hydroelectricity is a controllable renewable energy
- 83% of electricity is hydroelectric in Brazil, 17% in France and 92\% in Norway

Motivating example: hydroelectric energy management

- u water hustled
- d demand
- c cost of unmet demand
- x_{0} / x_{1} water in the reservoir
- \bar{x} capacity of the reservoir

$$
\begin{array}{rl}
\min _{u, x_{1}} & c(d-u) \\
\text { s.t. } & 0 \leqslant u \leqslant d \\
& x_{1} \leqslant x_{0}-u+w \\
& 0 \leqslant x_{1} \leqslant \bar{x} \\
& x_{0} \text { fixed }
\end{array}
$$

- w rain and runoff

Motivating example: hydroelectric energy management

At step t

- u_{t} water hustled
- d_{t} demand
- c_{t} cost of unmet demand
- x_{t} water in the reservoir
- \bar{x} capacity of the reservoir
- w_{t} rain and runoff

$$
\begin{array}{lll}
\min _{u_{t}, x_{t}} & \sum_{t=1}^{T} c_{t}\left(d_{t}-u_{t}\right) & \\
\text { s.t. } & 0 \leqslant u_{t} \leqslant d_{t} & , \forall t \in[T] \\
& x_{t+1} \leqslant x_{t}-u_{t}+w_{t} & , \forall t \in[T] \\
& 0 \leqslant x_{t} \leqslant \bar{x} & , \forall t \in[T] \\
& x_{0} \text { fixed } &
\end{array}
$$

Motivating example: hydroelectric energy management

At step t

- u_{t} water hustled
- d_{t} demand
- c_{t} cost of unmet demand
- x_{t} water in the reservoir
- \bar{x} capacity of the reservoir
- w_{t} rain and runoff

$$
\begin{array}{lll}
\min _{u_{t}, x_{t}} & \sum_{t=1}^{T} c_{t}\left(d_{t}-u_{t}\right) & \\
\text { s.t. } & 0 \leqslant u_{t} \leqslant d_{t} & , \forall t \in[T] \\
& x_{t+1} \leqslant x_{t}-u_{t}+w_{t} & , \forall t \in[T] \\
& 0 \leqslant x_{t} \leqslant \bar{x} & , \forall t \in[T] \\
& x_{0} \text { fixed } &
\end{array}
$$

General form

$$
\min _{x \in \mathbb{R}^{n}} c^{\top} x
$$

s.t. $A x \leqslant b$

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

$$
A=\left(\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1 \\
-1 & -1 \\
-1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right) \quad b=\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
0.5 \\
0.5
\end{array}\right) \begin{array}{r}
x_{1}+x_{2} \leqslant 1 \\
x_{1}-x_{2} \leqslant 1 \\
-x_{1}-x_{2} \leqslant 1 \\
-x_{1}+x_{2} \leqslant 1 \\
x_{1} \leqslant 0.5 \\
x_{2} \leqslant 0.5
\end{array}
$$

Linear Programming and polyhedra

Definition

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x \leqslant b
\end{array}
$$

Polyhedron:

Intersection of finite number of halfspaces
The set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leqslant b\right\}$ of admissible solutions is a polyhedron.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
-1 & -1 \\
-1 & 1 \\
1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right) \quad b=\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
0.5 \\
0.5 \\
-1.2
\end{array}\right) \begin{aligned}
x_{1}+x_{2} \leqslant 1 & (1) \\
x_{1}-x_{2} \leqslant 1 & (2) \\
-x_{1}-x_{2} \leqslant 1 & (3) \\
-x_{1}+x_{2} \leqslant 1 & (4) \\
x_{1} \leqslant 0.5 & (5) \\
x_{2} \leqslant 0.5 & (6) \\
x_{1} \geqslant-1.2 & (7)
\end{aligned}
$$

But renewables are inherently stochastic!

Rain, runoff, cost and demand are random.

At step t

- u_{t} water hustled
- d_{t} demand
- c_{t} cost of unmet demand
- x_{t} water in the reservoir
- \bar{x} capacity of the reservoir
- w_{t} rain and runoff

$$
\begin{array}{ll}
\min _{u_{t}, x_{t}} \sum_{t=1}^{T} c_{t}\left(d_{t}-u_{t}\right) & \\
\text { s.t. } 0 \leqslant u_{t} \leqslant d_{t} & , \forall t \in[T] \\
& x_{t+1} \leqslant x_{t}-u_{t}+w_{t} \\
& 0 \leqslant x_{t} \leqslant \bar{x} \\
& x_{0} \text { fixed }
\end{array}
$$

But renewables are inherently stochastic!

Rain, runoff, cost and demand are random.

At step t

- \boldsymbol{u}_{t} water hustled
- \boldsymbol{d}_{t} demand
- \boldsymbol{c}_{t} cost of unmet demand
- x_{t} water in the reservoir
- \bar{x} capacity of the reservoir
- \boldsymbol{w}_{t} rain and runoff

$$
\begin{array}{ll}
\min _{\boldsymbol{u}_{t}, \boldsymbol{x}_{t}} \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}\left(\boldsymbol{d}_{t}-\boldsymbol{u}_{t}\right)\right] & \\
\text { s.t. } 0 \leqslant \boldsymbol{u}_{t} \leqslant \boldsymbol{d}_{t} & , \forall t \in[T] \\
\boldsymbol{x}_{t+1} \leqslant \boldsymbol{x}_{t}-\boldsymbol{u}_{t}+\boldsymbol{w}_{t} & , \forall t \in[T] \\
0 \leqslant \boldsymbol{x}_{t} \leqslant \bar{x} & , \forall t \in[T] \\
\boldsymbol{x}_{0} \equiv x_{0} \text { given } & , \forall t \in[T] \\
\sigma\left(\boldsymbol{u}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{d}_{\tau}, \boldsymbol{w}_{\tau}\right)_{\tau \leqslant t} & , \forall t \in[T] \\
\underbrace{\sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{d}_{\tau}, \boldsymbol{w}_{\tau}\right)_{\tau \leqslant t}}_{\text {Measurability constraints }} &
\end{array}
$$

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(x_{t}\right)_{t \in[T]}} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\xi_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\xi_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(x_{t}\right)} t_{t[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\xi_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1} \rightsquigarrow \xi_{2} \rightsquigarrow \cdots \cdots x_{T-1} \rightsquigarrow \xi_{T} \rightsquigarrow x_{T}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1} \rightsquigarrow \xi_{2}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1} \rightsquigarrow \xi_{2} \rightsquigarrow \cdots \rightsquigarrow x_{T-1}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(x_{t} t \in[T]\right.} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1} \rightsquigarrow \xi_{2} \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_{T}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\left.\min _{\left(x_{t}\right)}\right)_{t \in[T]} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \xi_{1} \rightsquigarrow x_{1} \rightsquigarrow \xi_{2} \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_{T} \rightsquigarrow x_{T}
$$

Equivalent form

Multistage stochastic linear programming (MSLP)

$$
\begin{array}{cll}
\min _{\left(\boldsymbol{x}_{t}\right)_{t \in[T]}} & \mathbb{E}\left[\sum_{t=1}^{T} \boldsymbol{c}_{t}^{\top} \boldsymbol{x}_{t}\right] & \\
\text { s.t. } & \boldsymbol{A}_{t} \boldsymbol{x}_{t}+\boldsymbol{B}_{t} \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_{t} & \forall t \in[T] \\
& \sigma\left(\boldsymbol{x}_{t}\right) \subset \sigma\left(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau}\right)_{\tau \leqslant t} & \forall t \in[T] \\
& \boldsymbol{x}_{0} \equiv x_{0} \text { given } &
\end{array}
$$

$\boldsymbol{\xi}_{t}=\left(\boldsymbol{c}_{t}, \boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)_{t \in[T]}$ is assumed to be stagewise independent.
At each time step: the present noise is revealed then we take a decision.

$$
x_{0} \rightsquigarrow \boldsymbol{\xi}_{1} \rightsquigarrow x_{1} \rightsquigarrow \boldsymbol{\xi}_{2} \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_{T} \rightsquigarrow x_{T}
$$

Equivalent form
$\min _{x_{1}: A_{1} x_{1}+B_{1} x_{0} \leqslant b_{1}} c_{1}^{\top} x_{1}+\mathbb{E}\left[\min _{x_{2}: \boldsymbol{A}_{2} x_{2}+\boldsymbol{B}_{2} x_{1} \leqslant \boldsymbol{b}_{2}} \boldsymbol{c}_{2}^{\top} x_{2}+\mathbb{E}\left[\cdots+\mathbb{E}\left[\min _{x_{T}: \boldsymbol{A}_{T} x_{T}+\boldsymbol{B}_{T x_{T}-1} \leqslant \boldsymbol{b}_{T}} \boldsymbol{c}_{T}^{\top} x_{T}\right]\right]\right]$

Dynamic Programming (Bellman 1966)

$$
\min _{x_{1}: A_{1} x_{1}+B_{1} x_{0} \leqslant b_{1}} c_{1}^{\top} x_{1}+\mathbb{E}\left[\min _{x_{2}: \boldsymbol{A}_{2} x_{2}+\boldsymbol{B}_{2} x_{1} \leqslant \boldsymbol{b}_{2}} \boldsymbol{c}_{2}^{\top} x_{2}+\mathbb{E}\left[\cdots+\mathbb{E}\left[\min _{x_{T}: \boldsymbol{A}_{T} x_{T}+\boldsymbol{B}_{T} x_{T-1} \leqslant \boldsymbol{b}_{T}} \boldsymbol{c}_{T}^{\top} x_{T}\right]\right]\right]
$$

We set $V_{T+1} \equiv 0$ and $V_{t}\left(x_{t-1}\right):=\mathbb{E}\left[\begin{array}{cl}\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\ \text { s.t. } & \boldsymbol{A}_{t} x_{t}+\boldsymbol{B}_{t} x_{t-1} \leqslant \boldsymbol{b}_{t}\end{array}\right]$

Dynamic Programming (Bellman 1966)

$\min _{x_{1}: A_{1} x_{1}+B_{1} x_{0} \leqslant b_{1}} c_{1}^{\top} x_{1}+\mathbb{E}[\min _{x_{2}: \boldsymbol{A}_{2} x_{2}+\boldsymbol{B}_{2} x_{1} \leqslant \boldsymbol{b}_{2}} \boldsymbol{c}_{2}^{\top} x_{2}+\mathbb{E}[\cdots+\mathbb{E}[\underbrace{\left.\min _{x_{T}: \boldsymbol{A}_{T} x_{T}+\boldsymbol{B}_{T} x_{T-1} \leqslant \boldsymbol{b}_{T}} \boldsymbol{c}_{T}^{\top} x_{T}\right]}_{\boldsymbol{V}_{T}\left(x_{T-1}\right)}]]$

We set $V_{T+1} \equiv 0$ and $V_{t}\left(x_{t-1}\right):=\mathbb{E}\left[\begin{array}{cl}\min _{x_{t} \in \mathbb{R}_{t}} & \boldsymbol{c}_{t}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\ \text { s.t. } & \boldsymbol{A}_{t} x_{t}+\boldsymbol{B}_{t} x_{t-1} \leqslant \boldsymbol{b}_{t}\end{array}\right]$

Dynamic Programming (Bellman 1966)

$$
\min _{x_{1}: A_{1} x_{1}+B_{1} x_{0} \leqslant b_{1}} c_{1}^{\top} x_{1}+\mathbb{E}[\min _{x_{2}: \boldsymbol{A}_{2} x_{2}+\boldsymbol{B}_{2} x_{1} \leqslant \boldsymbol{b}_{2}} \boldsymbol{c}_{2}^{\top} x_{2}+\mathbb{E}[\cdots+\underbrace{\mathbb{E}[\underbrace{}_{x_{T}: \boldsymbol{A}_{T} x_{T}+\boldsymbol{B}_{T} x_{T-1} \leqslant \boldsymbol{b}_{T}} \boldsymbol{c}_{T}^{\top} x_{T}]}_{V_{T}\left(x_{T-1}\right)}]
$$

We set $V_{T+1} \equiv 0$ and $V_{t}\left(x_{t-1}\right):=\mathbb{E}\left[\begin{array}{cl}\min _{x_{t} \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\ \text { s.t. } & \boldsymbol{A}_{t} x_{t}+\boldsymbol{B}_{t} x_{t-1} \leqslant \boldsymbol{b}_{t}\end{array}\right]$

Dynamic Programming (Bellman 1966)

We set $V_{T+1} \equiv 0$ and $V_{t}\left(x_{t-1}\right):=\mathbb{E}\left[\begin{array}{cl}\min _{x_{t} \mathbb{R}^{n t}} & \boldsymbol{c}_{t}^{\top} x_{t}+V_{t+1}\left(x_{t}\right) \\ \text { s.t. } & \boldsymbol{A}_{t} x_{t}+\boldsymbol{B}_{t} x_{t-1} \leqslant \boldsymbol{b}_{t}\end{array}\right]$

Dynamic programming: finite case

Thank you Vincent for this animation.

Dynamic programming: finite case

Dynamic programming: finite case

\Rightarrow Continuous space: algorithms such as SDDP (discussed later).

Dynamic programming: finite case

\Rightarrow Continuous space: algorithms such as SDDP (discussed later).
\Leftrightarrow How to deal with continuous distributions ?

Quantization of a MSLP

Real problem

$$
V_{t}(x)=\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{A}_{t} y+B_{t} x \leqslant \boldsymbol{b}_{t}
\end{array}\right]
$$

ξ_{t} continuous

Quantization of a MSLP

Real problem

$$
V_{t}(x)=\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{A}_{t} y+B_{t} x \leqslant \boldsymbol{b}_{t}
\end{array}\right]
$$

Sample Average Approximation (SAA)
ξ_{t} continuous

SAA $N=20$

Quantization of a MSLP

Real problem

$$
V_{t}(x)=\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{A}_{t} y+B_{t} x \leqslant \boldsymbol{b}_{t}
\end{array}\right]
$$

Sample Average Approximation (SAA)

$$
V_{t, N}^{S A A}(x):=\frac{1}{N} \sum_{k=1}^{N} \hat{V}_{t}\left(x, \xi^{k}\right)
$$

ξ^{1}, \cdots, ξ^{N} drawn by Monte Carlo (ex Shapiro 2011)

Partition-based

$$
V_{t, \mathcal{P}}(x):=\sum_{P \in \mathcal{P}} \check{p}_{t, P} \hat{V}_{t}\left(x, \check{\xi}_{t, P}\right)
$$

with $\check{p}_{t, P}:=\mathbb{P}\left[\boldsymbol{\xi}_{t} \in P\right]$ and $\check{\xi}_{t, P}:=\mathbb{E}\left[\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t} \in P\right]$

Quantization of a MSLP

Real problem

$$
V_{t}(x)=\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]=\mathbb{E}\left[\begin{array}{cc}
\min _{y \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. } & \boldsymbol{A}_{t} y+B_{t} x \leqslant \boldsymbol{b}_{t}
\end{array}\right]
$$

Sample Average Approximation (SAA)
ξ_{t} continuous

SAA $N=20$

Partition-based

$$
V_{t, \mathcal{P}}(x):=\sum_{P \in \mathcal{P}} \check{p}_{t, P} \hat{V}_{t}\left(x, \check{\xi}_{t, P}\right)
$$

with $\check{p}_{t, P}:=\mathbb{P}\left[\boldsymbol{\xi}_{t} \in P\right]$ and $\check{\xi}_{t, P}:=\mathbb{E}\left[\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t} \in P\right]$ If $\xi \mapsto \hat{V}(x, \xi)$ is convex, $V_{t, \mathcal{P}}(x) \leqslant V_{t}(x)$ (Jensen, Kuhn)

ξ^{1}, \cdots, ξ^{N} drawn by Monte Carlo (ex Shapiro 2011)

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $\left(\check{\xi}_{t}\right)_{t \in[T]}$ such that

$$
V_{t}(x)=\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]=\mathbb{E}\left[\hat{V}_{t}\left(x, \check{\boldsymbol{\xi}}_{t}\right)\right] .
$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_{t}}$, and all $t \in[T]$.
- universal if there exists a partition $\mathcal{P}_{t, x}$ such that the induced quantization is exact at time t on x, for all distributions of $\left(\xi_{\tau}\right)_{\tau \in[T]}$.

ξ_{t} continuous

$\check{\xi}_{t}$ quantized

Conditions for the existence of an exact quantization ?

Assume $V_{t+1} \equiv 0$ and denote $V:=V_{t}, \hat{V}:=\hat{V}_{t}$ and $\boldsymbol{\xi}:=\boldsymbol{\xi}_{t}$ for now.

$$
V(x)=\mathbb{E}[\hat{V}(x, \xi)]=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{n}} & c^{\top} y \\
\text { s.t. } & A y+B x \leqslant b
\end{array}\right]
$$

We have an exact quantization if and only if there exists a finitely supported noise $\check{\xi}$ such that

$$
\mathbb{E}[\hat{V}(x, \xi)]=\mathbb{E}[\hat{V}(x, \check{\xi})] .
$$

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	$?$	$?$	$?$
Uniform	$?$	$?$	$?$

A first counter example

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	$?$	$?$	$?$
Uniform	$?$	$?$	$?$

Let $\boldsymbol{A}=(-\boldsymbol{u}), \boldsymbol{B} \equiv(0), \boldsymbol{b} \equiv(-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$
\hat{V}(x, \xi)=\begin{aligned}
& \min _{y \in \mathbb{R}} \begin{array}{l}
y \\
\text { s.t. } \\
u y \geqslant 1
\end{array}=\frac{1}{u} .
\end{aligned}
$$

By strict convexity, for all partition \mathcal{P}

with $\check{p} P=\mathbb{P}[\xi \in P], \check{\xi}_{P}=\mathbb{E}[\xi \mid \xi \in P]$.
\Rightarrow There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.

A first counter example

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	$?$	$?$	$?$
Uniform	$?$	$?$	$?$

Let $\boldsymbol{A}=(-\boldsymbol{u}), \boldsymbol{B} \equiv(0), \boldsymbol{b} \equiv(-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$
\hat{V}(x, \xi)=\min _{y \in \mathbb{R}} \begin{aligned}
& y \\
& \text { s.t. } \\
& u y \geqslant 1
\end{aligned}=\frac{1}{u}
$$

By strict convexity, for all partition \mathcal{P}

$$
\sum_{P \in \mathcal{P}} \check{p}_{P} \hat{V}\left(x, \check{\xi}_{P}\right)<V(x)=\mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]
$$

with $\check{p}_{P}=\mathbb{P}[\boldsymbol{\xi} \in P], \check{\xi}_{P}=\mathbb{E}[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in P]$.

\Rightarrow There is no partition-based (local, uniform or universal) exact

 quantization result for \boldsymbol{A} non-finitely supported.
A first counter example

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	$?$	$?$	$?$
Uniform	$?$	$?$	$?$

Let $\boldsymbol{A}=(-\boldsymbol{u}), \boldsymbol{B} \equiv(0), \boldsymbol{b} \equiv(-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$
\hat{V}(x, \xi)=\min _{y \in \mathbb{R}} \begin{aligned}
& y \\
& \text { s.t. } \\
& u y \geqslant 1
\end{aligned}=\frac{1}{u}
$$

By strict convexity, for all partition \mathcal{P}

$$
\sum_{P \in \mathcal{P}} \check{p}_{P} \hat{V}\left(x, \check{\xi}_{P}\right)<V(x)=\mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]
$$

with $\check{p}_{P}=\mathbb{P}[\boldsymbol{\xi} \in P], \check{\xi}_{P}=\mathbb{E}[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in P]$.
\Rightarrow There is no partition-based (local, uniform or universal) exact quantization result for \boldsymbol{A} non-finitely supported.

A first counter example

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\star	$?$	$?$
Uniform	\star	$?$	$?$

Let $\boldsymbol{A}=(-\boldsymbol{u}), \boldsymbol{B} \equiv(0), \boldsymbol{b} \equiv(-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$
\hat{V}(x, \xi)=\begin{aligned}
& \min _{y \in \mathbb{R}} \begin{array}{l}
y \\
\text { s.t. } \\
u y \geqslant 1
\end{array}=\frac{1}{u}
\end{aligned}
$$

By strict convexity, for all partition \mathcal{P}

$$
\sum_{P \in \mathcal{P}} \check{P}_{P} \hat{V}\left(x, \check{\xi}_{P}\right)<V(x)=\mathbb{E}\left[\frac{1}{u}\right]
$$

with $\check{p}_{P}=\mathbb{P}[\boldsymbol{\xi} \in P], \check{\xi}_{P}=\mathbb{E}[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in P]$.
\Rightarrow There is no partition-based (local, uniform or universal) exact quantization result for \boldsymbol{A} non-finitely supported.
\Leftrightarrow From now on, A is deterministic: fixed recourse.

Uniform exact quantization and polyhedrality

$$
\hat{V}(x, \xi)=\min _{y \in \mathbb{R}^{m}} c^{\top} y
$$

$$
\text { s.t. } A y+B x \leqslant b
$$

Uniform exact quantization and polyhedrality

$$
\begin{aligned}
\hat{V}(x, \xi)= & \min _{y \in \mathbb{R}^{m}} c^{\top} y \\
& \text { s.t. }(x, y) \in P
\end{aligned}
$$

Uniform exact quantization and polyhedrality

$$
\begin{aligned}
\hat{V}(x, \xi)= & \min _{y \in \mathbb{R}^{m}} c^{\top} y \\
& \text { s.t. }(x, y) \in P \\
= & \min _{y \in \mathbb{R}^{m}} Q^{\xi}(x, y)
\end{aligned}
$$

with $Q^{\xi}(x, y):=c^{\top} y+\mathbb{I}_{(x, y) \in P}$.

Uniform exact quantization and polyhedrality

$$
\begin{aligned}
\hat{V}(x, \xi)= & \min _{y \in \mathbb{R}^{m}} c^{\top} y \\
& \text { s.t. }(x, y) \in P \\
= & \min _{y \in \mathbb{R}^{m}} Q^{\xi}(x, y)
\end{aligned}
$$

with $Q^{\xi}(x, y):=c^{\top} y+\mathbb{I}_{(x, y) \in P}$.
$\hat{V}(\cdot, \xi)$ is polyhedral because epi $(\hat{V}(\cdot, \xi))$ is the projection of epi $\left(Q^{\xi}\right)$.
epi $\left(Q^{\xi}\right)$

$$
\operatorname{epi}(\hat{V}(\cdot, \xi))
$$

Uniform exact quantization and polyhedrality

$$
\begin{align*}
\hat{V}(x, \xi)= & \min _{y \in \mathbb{R}^{m}} c^{\top} y \\
& \text { s.t. }(x, y) \in P \\
= & \min _{y \in \mathbb{R}^{m}} Q^{\xi}(x, y) \tag{epi}
\end{align*}
$$

$V(x)=\mathbb{E}[\hat{V}(x, \boldsymbol{\xi})]=\sum_{\xi \in \operatorname{supp}(\tilde{\xi})} p_{\xi} \hat{V}(x, \xi)$
\Leftrightarrow If the noise is finitely supported, then V is polyhedral

Uniform exact quantization and polyhedrality

$$
\begin{align*}
\hat{V}(x, \xi)= & \min _{y \in \mathbb{R}^{m}} c^{\top} y \\
& \text { s.t. }(x, y) \in P \\
= & \min _{y \in \mathbb{R}^{m}} Q^{\xi}(x, y) \tag{epi}
\end{align*}
$$

$V(x)=\mathbb{E}[\hat{V}(x, \boldsymbol{\xi})]=\sum_{\xi \in \operatorname{supp}\left(\check{\xi}^{\check{\xi}}\right)} p_{\xi} \hat{V}(x, \xi)$
\Rightarrow If the noise is finitely supported, then V is polyhedral
\Rightarrow Existence of uniform exact quantization implies polyhedrality of V.

Counter examples with stochastic constraints

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	$?$	$?$

Counter examples with stochastic constraints

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	$?$	$?$

Stochastic \boldsymbol{B}

$$
V(x)=\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{m}} & y \\ \text { s.t. } & u x-y \leqslant 0 \\ & y \geqslant 1\end{array}\right]
$$

$$
\begin{aligned}
& =\mathbb{E}[\max (\boldsymbol{u x}, 1)] \\
& = \begin{cases}1 & \text { if } x \leqslant 1 \\
\frac{x}{2}+\frac{1}{2 x} & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

Counter examples with stochastic constraints

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	$?$	$?$

Stochastic $\boldsymbol{B}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{m}} & y \\ \text { s.t. } & \boldsymbol{u x}-y \leqslant 0 \\ & y \geqslant 1\end{array}\right]$
$=\mathbb{E}\left[\begin{array}{ll}\max (\boldsymbol{u x}, 1)]\end{array}\right.$
$= \begin{cases}1 & \text { if } x \leqslant 1 \\ \frac{x}{2}+\frac{1}{2 x} & \text { if } x \geqslant 1\end{cases}$

Stochastic \boldsymbol{b}

$$
\begin{aligned} V(x) & =\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{m}} & y \\ \text { s.t. } & y \geqslant \boldsymbol{u} \\ & x-y \leqslant 0\end{array}\right] \\ & =\mathbb{E}[\max (x, \boldsymbol{u})] \\ & = \begin{cases}\frac{1}{2} & \text { if } x \leqslant 0 \\ \frac{x^{2}+1}{2} & \text { if } x \in[0,1] \\ x & \text { if } x \geqslant 1\end{cases} \end{aligned} .
$$

u is uniform on $[0,1]$

Counter examples with stochastic constraints

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	$?$	$?$

$\Rightarrow V$ is not polyhedral \Rightarrow No uniform exact quantization for non-finitely supported \boldsymbol{B} and \boldsymbol{b}.

Counter examples with stochastic constraints

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	$*$	$?$

Stochastic \boldsymbol{B}

$$
V(x)=\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{m}} & y \\ \text { s.t. } & u x-y \leqslant 0 \\ & y \geqslant 1\end{array}\right]
$$

$=\mathbb{E}[\max (\boldsymbol{u x}, 1)]$
$= \begin{cases}1 & \text { if } x \leqslant 1 \\ \frac{x}{2}+\frac{1}{2 x} & \text { if } x \geqslant 1\end{cases}$

$$
\begin{aligned}
& \begin{aligned}
\text { Stochastic } \boldsymbol{b} \\
V(x)=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} & y \\
\text { s.t. } & y \geqslant \boldsymbol{u} \\
& x-y \leqslant 0
\end{array}\right]
\end{aligned} \\
& =\mathbb{E}[\max (x, \boldsymbol{u})] \\
& = \begin{cases}\frac{1}{2} & \text { if } x \leqslant 0 \\
\frac{x^{2}+1}{2} & \text { if } x \in[0,1] \\
x & \text { if } x \geqslant 1\end{cases}
\end{aligned}
$$

$\Rightarrow V$ is not polyhedral \Rightarrow No uniform exact quantization for non-finitely supported \boldsymbol{B} and \boldsymbol{b}.

Remaining cases

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & \boldsymbol{A} y+\boldsymbol{B} x \leqslant \boldsymbol{b}
\end{array}\right]
$$

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	$?$
Uniform	\times	\times	$?$

Remaining cases

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & \boldsymbol{A} y+\boldsymbol{B} x \leqslant \boldsymbol{b}
\end{array}\right]
$$

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	
Uniform	\times	\times	\nearrow

Theorem (FGL 2021)
If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Remaining cases

$$
V(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{m}} & \boldsymbol{c}^{\top} y \\
\text { s.t. } & \boldsymbol{A} y+\boldsymbol{B} x \leqslant \boldsymbol{b}
\end{array}\right]
$$

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	\boldsymbol{V}	\checkmark
Uniform	\times	\times	\checkmark

Theorem (FGL 2021)
If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic, then there exists a universal and local exact quantization.

Contents of the manuscript and articles

Chapter 3:

Chapter 4:
M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems, arXiv preprint arXiv:2107.09566 (2021),
Best student paper, ECSO-CMS 2022, Venice.

Chapter 5:
© M. Forcier, V. Leclère
Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization,
Operation Research Letters, to appear (2022).
Chapter 6:
(3) M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions,
HAL Id: hal-03683697 (2022).

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming
(4) Conclusion and perspectives

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming
(4) Conclusion and perspectives

Reformulation of $V(x)$ highlighting the role of the fiber P_{x} For a given x, (we still assume $V_{t+1} \equiv 0$)

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right] \quad \text { where } \quad P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
$$

Illustrative running example:

$$
P_{x}:=\left\{y \in \mathbb{R}^{m} \mid\|y\|_{1} \leqslant 1,\right.
$$

$$
\left.y_{1} \leqslant x, y_{2} \leqslant x\right\}
$$

Reformulation of $V(x)$ highlighting the role of the fiber P_{x} For a given x, (we still assume $V_{t+1} \equiv 0$)

$$
V(x):=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y \\
\text { s.t. } & A y+B x \leqslant b
\end{array}\right]
$$

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \quad \text { where } \quad P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
$$

Illustrative running example:

Reformulation of $V(x)$ highlighting the role of the fiber P_{x} For a given x, (we still assume $V_{t+1} \equiv 0$)

$$
V(x):=\mathbb{E}\left[\begin{array}{ll}
\min _{y \in \mathbb{R}^{m}} \boldsymbol{c}^{\top} y \\
\text { s.t. } & A y+B x \leqslant b
\end{array}\right]
$$

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \quad \text { where } \quad P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
$$

Illustrative running example:

$$
\begin{aligned}
P_{x}:=\left\{y \in \mathbb{R}^{m} \mid\right. & \|y\|_{1} \leqslant 1, \\
& \left.y_{1} \leqslant x, y_{2} \leqslant x\right\}
\end{aligned}
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

P_{x}, y and $N_{P_{x}}(y)$ for $x=0.3$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

$$
N_{P_{x}}(y) \text { for } x=0.3
$$

$$
P_{x}, y \text { and } N_{P_{x}}(y) \text { for } x=0.3
$$

Normal fan $\mathcal{N}\left(P_{x}\right)$

Definition

The normal fan of the fiber P_{x} is

$$
\mathcal{N}\left(P_{x}\right):=\left\{N_{P_{x}}(y) \mid y \in P_{x}\right\}
$$

with $N_{P_{x}}(y)=\left\{c \mid \forall y^{\prime} \in P_{x}, c^{\top}\left(y^{\prime}-y\right) \leqslant 0\right\}$ the normal cone of P_{x} at y.

Proposition

If P_{x} is bounded, $\left\{\operatorname{ri}(N) \mid N \in \mathcal{N}\left(P_{x}\right)\right\}$ is a partition of \mathbb{R}^{m}.

P_{x} and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$
$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right)$: partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

$\mathcal{N}\left(P_{x}\right):$ partition of cost coherent with the min

$$
V(x)=\mathbb{E}\left[\min _{y \in P_{x}} c^{\top} y\right]
$$

For any $N \in \mathcal{N}\left(P_{x}\right),-c \mapsto \arg \min c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$. $y \in P_{x}$

Cost $-c$ and $\mathcal{N}\left(P_{x}\right)$ for $x=0.3$

$$
P_{x} \text { for } x=0.3
$$

Local and universal exact quantization for \boldsymbol{c}

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N} \min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right]
\end{aligned}
$$

$$
\mathcal{N}\left(P_{x}\right) \quad \text { for } x=0.3
$$

Local and universal exact quantization for \boldsymbol{c}

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[1_{\boldsymbol{c} \in-\text { riN }} \min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \text { where } y_{N}(x) \in \arg \min _{y \in P_{x}} \underbrace{c^{\top}}_{\epsilon-\text { ri } N} y . \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[1_{\boldsymbol{c} \in-\text { riN }} \boldsymbol{c}^{\top}\right] y_{N}(x)
\end{aligned}
$$

$$
\mathcal{N}\left(P_{x}\right) \quad \text { for } x=0.3
$$

Local and universal exact quantization for \boldsymbol{c}

$$
\begin{aligned}
& V(x)=\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
&=\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N} \min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \text { where } y_{N}(x) \in \arg \min _{y \in P_{x}} \underbrace{c^{\top}}_{\in-\mathrm{ri} N} y . \\
&=\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x) \\
&=\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \check{c}_{N}^{\top} y_{N}(x) \\
& \mathcal{N}\left(P_{x}\right) \text { and } p_{N} \check{c}_{N} \text { for } x=0.3
\end{aligned}
$$

$$
\begin{aligned}
p_{N} & :=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
\check{c}_{N} & :=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N]
\end{aligned}
$$

We replace the continuous cost \boldsymbol{c}, by the discrete cost \check{c}.

Local and universal exact quantization for \boldsymbol{c}

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N} \min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \text { where } y_{N}(x) \in \arg \min _{y \in P_{x}} \underbrace{c^{\top}}_{\in-\mathrm{ri} N} y . \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in-\mathrm{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x) \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \check{c}_{N}^{\top} y_{N}(x) \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
\end{aligned}
$$

For $N \in \mathcal{N}\left(P_{x}\right)$,

$$
\begin{aligned}
& p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
& \check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N]
\end{aligned}
$$

We replace the continuous cost \boldsymbol{c}, by the discrete cost č.

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

y_{2}

$$
x=-0.1
$$

$-X$
P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}
A

$$
\mathcal{N}\left(P_{x}\right) \quad P_{x} \text { and } \mathcal{N}\left(P_{x}\right)
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
y_{2}
$$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
y_{2}
$$

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$x=0.6$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=0.8
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
y_{2}
$$

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=0.9
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$$
\mathcal{N}\left(P_{x}\right)
$$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=1.1
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
x=1.2
$$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$\mathcal{N}\left(P_{x}\right)$
P_{x} and $\mathcal{N}\left(P_{x}\right)$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$\mathcal{N}\left(P_{x}\right)$

P_{x} and $\mathcal{N}\left(P_{x}\right)$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
\mathcal{N}\left(P_{x}\right)
$$

$$
P_{x} \text { and } \mathcal{N}\left(P_{x}\right)
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

A

$\mathcal{N}\left(P_{x}\right)$

$$
P_{x} \text { and } \mathcal{N}\left(P_{x}\right)
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

$$
y_{2}
$$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

P and P_{x}
x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

$$
\mathcal{N}\left(P_{x}\right) \quad P_{x} \text { and } \mathcal{N}\left(P_{x}\right)
$$

$$
P \text { and } P_{x}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

y_{2}

x is no longer fixed but $x \mapsto \mathcal{N}\left(P_{x}\right)$ is piecewise constant.

$$
P_{x}:=\{y \mid A y+B x \leqslant b\} \quad \text { and } \quad P:=\{(x, y) \mid A y+B x \leqslant b\}
$$

What are the constant regions of $x \mapsto \mathcal{N}\left(P_{x}\right)$?

Proposition

There exists a collection $\mathcal{C}(P, \pi)$ called the chamber complex whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}\left(P_{x}\right)$. I.e, for $\sigma \in \mathcal{C}(P, \pi)$ and $x, x^{\prime} \in \operatorname{ri}(\sigma)$, we have $\mathcal{N}\left(P_{x}\right)=\mathcal{N}\left(P_{x^{\prime}}\right)=: \mathcal{N}_{\sigma}$

\mathcal{N}_{σ} for $\sigma=[-0.5,0] \quad \mathcal{N}_{\sigma}$ for $\sigma=[0,0.5] \quad \mathcal{N}_{\sigma}$ for $\sigma=[0.5,1] \quad \mathcal{N}_{\sigma}$ for $\sigma=[1,+\infty)$

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)
The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)
The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $\mathcal{C}(P, \pi)$ of P along π is

$$
\mathcal{C}(P, \pi):=\left\{\sigma_{P, \pi}(x) \mid x \in \pi(P)\right\}
$$

where

$$
\sigma_{P, \pi}(x):=\bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)
$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

\mathcal{N}_{σ} and \check{c}

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{\tau}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{T}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

\mathcal{N}_{σ}

We take the common refinement:

$$
\mathcal{R}:=\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}=\left\{N \cap N^{\prime} \mid N \in \mathcal{N}_{\sigma}, N^{\prime} \in \mathcal{N}_{\tau}\right\}
$$

For all $x \in \operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$,
$V(x)=\sum_{N \in \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y$

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all $x \in \operatorname{ri}(\sigma)$,
For all $x^{\prime} \in \operatorname{ri}(\tau)$,
$V(x)=\sum_{N \in \mathcal{N}_{\sigma}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y$

$$
V\left(x^{\prime}\right)=\sum_{N \in \mathcal{N}_{T}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

\mathcal{N}_{σ}

We take the common refinement:

$$
\mathcal{R}:=\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}=\left\{N \cap N^{\prime} \mid N \in \mathcal{N}_{\sigma}, N^{\prime} \in \mathcal{N}_{\tau}\right\}
$$

For all $x \in \operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$,

$$
V(x)=\sum_{N \in \mathcal{R}} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
$$

Uniform exact quantization for \boldsymbol{c}

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}\left(P_{x}\right)$,
- $x \mapsto \mathcal{N}\left(P_{x}\right)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at ri (σ) induced by \mathcal{N}_{σ},
- local exact quantization at $\operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Uniform exact quantization for \boldsymbol{c}

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}\left(P_{x}\right)$,
- $x \mapsto \mathcal{N}\left(P_{x}\right)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at ri (σ) induced by \mathcal{N}_{σ},
- local exact quantization at $\operatorname{ri}(\sigma) \cup \operatorname{ri}(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Theorem (FGL21, Uniform and universal quantization of the cost)
Let $\mathcal{R}=\bigwedge_{\sigma \in \mathcal{C}(P, \pi)}-\mathcal{N}_{\sigma}$, then for all $x \in \mathbb{R}^{n}$

$$
V(x)=\sum_{R \in \mathcal{R}} \check{p}_{R} \min _{y \in P_{x}} \check{c}_{R}^{\top} y
$$

where $\check{p}_{R}:=\mathbb{P}[\boldsymbol{c} \in \mathrm{ri}(R)]$ and $\check{c}_{R}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in \mathrm{ri}(R)]$

Polyhedral characterization of V

Theorem (FGL 2021)
For all distributions of \boldsymbol{c}, V is affine on each cell of $\mathcal{C}(P, \pi)$.

Polyhedral characterization of V

Theorem (FGL 2021)
For all distributions of \boldsymbol{c}, V is affine on each cell of $\mathcal{C}(P, \pi)$.
Theorem (FGL 2021)
Under an affine change of variable, V is the support function of E

$$
V(x)=\sigma_{E}(b-B x)=\sup _{\lambda \in E}(b-B x)^{\top} \lambda
$$

Polyhedral characterization of V

Theorem (FGL 2021)
For all distributions of \boldsymbol{c}, V is affine on each cell of $\mathcal{C}(P, \pi)$.

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

$$
V(x)=\sigma_{E}(b-B x)=\sup _{\lambda \in E}(b-B x)^{\top} \lambda
$$

where $E:=\mathbb{E}\left[D_{c}\right]=\int D_{c} \mathbb{P}(d c)$ is the weighted fiber polyhedron and $D_{c}:=\left\{\lambda \mid A^{\top} \lambda+c=0\right\}$ the dual admissible set.

The weighted fiber polyhedron is a Minkowski integral with respect to the distribution $d \mathbb{P}(c)$
\rightsquigarrow extension of fiber polytope (uniform distribution) of
R L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527-549, 1992.

Explicit computation of the example

Different distributions of \boldsymbol{c} : uniform on norm 1 ball uniform on norm 2 ball uniformm on norm ∞ ball

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Multistage uniform and universal exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{y \in \mathbb{R}^{n_{t}}} & \boldsymbol{c}_{t}^{\top} y+V_{t+1}(y) \\
\text { s.t. }(x, y) \in P_{t}
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.

Multistage uniform and universal exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{\substack{y \in \mathbb{R}^{n_{t}} \\
z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.

Multistage uniform and universal exact quantization

$$
V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}
\min _{\substack{y \in \mathbb{R}^{n_{t}} \\
z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\
\text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)
\end{array}\right]
$$

Multistage uniform and universal exact quantization

$V_{t}(x)=\mathbb{E}\left[\begin{array}{ll}\min _{\substack{y \in \mathbb{R}^{n_{t}} \\ z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\ \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)\end{array}\right]$

$\triangle \operatorname{epi}\left(Q_{t}\right)$ appears in the constraint and depends on $\boldsymbol{c}_{t+1}, \cdots, \boldsymbol{c}_{\boldsymbol{T}}$!
with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Leftrightarrow V_{t}$ affine, $x \mapsto \mathcal{N}\left(P_{x}\right)$ constant on $\mathcal{C}\left(\right.$ epi $\left.\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$

Multistage uniform and universal exact quantization

$V_{t}(x)=\mathbb{E}\left[\begin{array}{ll}\min _{\substack{y \in \mathbb{R}^{n_{t}} \\ z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\ \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)\end{array}\right]$
with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Leftrightarrow V_{t}$ affine, $x \mapsto \mathcal{N}\left(P_{x}\right)$ constant on $\mathcal{C}\left(\right.$ epi $\left.\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
\triangle epi $\left(Q_{t}\right)$ appears in the constraint and depends on $\boldsymbol{c}_{t+1}, \cdots, \boldsymbol{c}_{\boldsymbol{T}}$!
V_{t+1} affine on $\mathcal{P}_{t+1} \quad$ (by assumption)

Multistage uniform and universal exact quantization

$V_{t}(x)=\mathbb{E}\left[\begin{array}{ll}\min _{\substack{y \in \mathbb{R}^{n_{t}} \\ z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\ \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)\end{array}\right]$
with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Leftrightarrow V_{t}$ affine, $x \mapsto \mathcal{N}\left(P_{x}\right)$ constant on $\mathcal{C}\left(\right.$ epi $\left.\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
epi $\left(Q_{t}\right)$ appears in the constraint and depends on $\boldsymbol{c}_{t+1}, \cdots, \boldsymbol{c}_{T}$!
V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$
\mathcal{Q}_{t}:=\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}\right)
$$

Multistage uniform and universal exact quantization

$V_{t}(x)=\mathbb{E}\left[\begin{array}{ll}\min _{\substack{y \in \mathbb{R}^{n_{t}} \\ z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\ \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)\end{array}\right]$
with $Q_{t}(x, y):=V_{t+1}(y)+\mathbb{I}_{(x, y) \in P_{t}}$.
$\Leftrightarrow V_{t}$ affine, $x \mapsto \mathcal{N}\left(P_{x}\right)$ constant on $\mathcal{C}\left(\right.$ epi $\left.\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
\triangle epi $\left(Q_{t}\right)$ appears in the constraint and depends on $\boldsymbol{c}_{t+1}, \cdots, \boldsymbol{c}_{T}$!
V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$
\begin{aligned}
& \mathcal{Q}_{t}:=\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}\right) \\
& \mathcal{P}_{t}:=\mathcal{C}\left(\mathcal{Q}_{t}, \pi_{x}^{\times, y}\right)
\end{aligned}
$$

Multistage uniform and universal exact quantization
$V_{t}(x)=\mathbb{E}\left[\begin{array}{cl}\min _{\substack{y \in \mathbb{R}^{n_{t}} \\ z \in \mathbb{R}}} \boldsymbol{c}_{t}^{\top} y+z \\ & \text { s.t. }(x, y, z) \in \operatorname{epi}\left(Q_{t}\right)\end{array}\right]$

[FGL21, Lem. 4.1]: $\mathcal{P}_{t} \preccurlyeq \mathcal{C}\left(\mathrm{epi}\left(Q_{t}\right), \pi_{x}^{x, y, z}\right)$
$\Leftrightarrow V_{t}$ affine on $\mathcal{P}_{t}, \mathcal{N}\left(P_{x}\right)$ constant on \mathcal{P}_{t}

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$
\begin{aligned}
\mathcal{P}_{t, \xi} & :=\mathcal{C}\left(\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}(\xi)\right), \pi_{x_{t-1}}^{x_{t-1}, x_{t}}\right) \\
\mathcal{P}_{t} & :=\bigwedge_{\xi_{t} \in \operatorname{supp} \xi_{t}} \mathcal{P}_{t, \xi}
\end{aligned}
$$

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$
\begin{aligned}
\mathcal{P}_{t, \xi} & :=\mathcal{C}\left(\left(\mathbb{R}^{n_{t}} \times \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(P_{t}(\xi)\right), \pi_{x_{t-1}}^{x_{t-1}, x_{t}}\right) \\
\mathcal{P}_{t} & :=\bigwedge_{\xi_{t} \in \operatorname{supp} \xi_{t}} \mathcal{P}_{t, \xi}
\end{aligned}
$$

Theorem (FGL 21)

All results generalizes to MSLP with finitely supported stochastic constraints.
$\Leftrightarrow\left(V_{t}\right)_{t}$ are affine on universal chamber complexes, i.e. independent of the law of $\left(\boldsymbol{c}_{t}\right)_{t}$
\Leftrightarrow We have an uniform and universal exact quantization.

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming
(4) Conclusion and perspectives

Earlier and new complexity results

Volume of a polytope
$\operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right)$ or
$\operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension
d: Lawrence (1991)

Earlier and new complexity results

Volume of a polytope

$$
\begin{aligned}
& \operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right) \text { or } \\
& \operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)
\end{aligned}
$$

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{1}^{\top} x+\mathbb{E}\left[\begin{array}{l}
\min _{y \in \mathbb{R}^{m}} c_{2}^{\top} y \\
\text { s.t. } A_{2} y+B_{2} x \leqslant b_{2}
\end{array}\right] \\
& \text { s.t. } A_{1} x \leqslant b_{1}
\end{aligned}
$$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Lawrence (1991)
- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m ?

Earlier and new complexity results

Volume of a polytope

$$
\begin{aligned}
& \operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right) \text { or } \\
& \operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)
\end{aligned}
$$

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{1}^{\top} x+\mathbb{E}\left[\begin{array}{l}
\min _{y \in \mathbb{R}^{m}} c_{2}^{\top} y \\
\text { s.t. } A_{2} y+B_{2} x \leqslant b_{2}
\end{array}\right] \\
& \text { s.t. } A_{1} x \leqslant b_{1}
\end{aligned}
$$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Lawrence (1991)
- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m :

FGL (2021)

Earlier and new complexity results

Volume of a polytope

$$
\begin{aligned}
& \operatorname{Vol}\left(\left\{z \in \mathbb{R}^{d} \mid A z \leqslant b\right\}\right) \text { or } \\
& \operatorname{Vol}\left(\operatorname{Conv}\left(v_{1}, \cdots, v_{n}\right)\right)
\end{aligned}
$$

- $\sharp P$-complete:

Dyer and Frieze (1988)

- Polynomial for fixed dimension d: Lawrence (1991)

2-stage linear problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} c_{1}^{\top} x+\mathbb{E}\left[\begin{array}{l}
\min _{y \in \mathbb{R}^{m}} c_{2}^{\top} y \\
\text { s.t. } A_{2} y+B_{2} x \leqslant b_{2}
\end{array}\right] \\
& \text { s.t. } A_{1} x \leqslant b_{1}
\end{aligned}
$$

- $\sharp P$-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m :

FGL (2021)
\rightsquigarrow Exact case
\rightsquigarrow Approximated case

Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_{2}, \cdots, n_{T}, are fixed. ${ }^{1}$
Assume that c admits a density function with a bounded total variation.
Then, there exists an algorithm that finds an ε-solution ${ }^{2}$ in polynomial time in $\log \left(\frac{1}{\varepsilon}\right)$ with probability 1 .

[^0]
Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_{2}, \cdots, n_{T}, are fixed. ${ }^{1}$
Assume that c admits a density function with a bounded total variation.
Then, there exists an algorithm that finds an ε-solution ${ }^{2}$ in polynomial time in $\log \left(\frac{1}{\varepsilon}\right)$ with probability 1 .
\Rightarrow Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\left[\boldsymbol{c} \mid \boldsymbol{c} \in C,\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$ and $\mathbb{P}\left[\boldsymbol{c} \in C \mid\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$.

[^1]
Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_{2}, \cdots, n_{T}, are fixed. ${ }^{1}$
Assume that c admits a density function with a bounded total variation.
Then, there exists an algorithm that finds an ε-solution ${ }^{2}$ in polynomial time in $\log \left(\frac{1}{\varepsilon}\right)$ with probability 1 .
\Rightarrow Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\left[\boldsymbol{c} \mid \boldsymbol{c} \in C,\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$ and $\mathbb{P}\left[\boldsymbol{c} \in C \mid\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$.

Proof based on ellipsoid (Gröstchel, Lovász, Schrijver) and upper bound theorems (McMullen, Stanley)

[^2]
Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)
Assume that T, n_{2}, \cdots, n_{T}, are fixed. ${ }^{1}$
Assume that c admits a density function with a bounded total variation.
Then, there exists an algorithm that finds an ε-solution ${ }^{2}$ in polynomial time in $\log \left(\frac{1}{\varepsilon}\right)$ with probability 1 .
\Leftrightarrow Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\left[\boldsymbol{c} \mid \boldsymbol{c} \in C,\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$ and $\mathbb{P}\left[\boldsymbol{c} \in C \mid\left(\boldsymbol{A}_{t}, \boldsymbol{B}_{t}, \boldsymbol{b}_{t}\right)=(A, B, b)\right]$.

Proof based on ellipsoid (Gröstchel, Lovász, Schrijver) and upper bound theorems (McMullen, Stanley)

By SAA, we can solve MSLP, up to precision ε, in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1-\alpha$, when T, n_{1}, \cdots, n_{T} are fixed.

[^3]${ }^{2}$ Or asserts that MSLP is unfeasible.

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Local exact quantization for constraints ?

Back to the 2-stage problem

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$?$	\checkmark
Uniform	\times	\times	\checkmark

Duality result

\Leftrightarrow Back to the case with random cost
^ The new cost depends on x : only local exact quantization.

Local exact quantization for constraints ?

Back to the 2-stage problem

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$\boldsymbol{?}$	\checkmark
Uniform	\times	\times	\checkmark

Duality result
$V(x)=\mathbb{E}[V(x, \xi)]=\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{n}} & c^{\top} y \\ \text { s.t. } & A y+B x \leqslant \boldsymbol{b}\end{array}\right]=\mathbb{E}\left[\begin{array}{ll}\max _{\lambda \in \mathbb{R}^{\ell}} & (B x-\boldsymbol{b})^{\top} \lambda \\ \text { s.t. } & A^{\top} \lambda+c=0\end{array}\right]$
\Rightarrow Back to the case with random cost
^ The new cost depends on x : only local exact quantization.

Local exact quantization for constraints ?

Back to the 2-stage problem

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$\boldsymbol{?}$	\checkmark
Uniform	\times	\times	\checkmark

Duality result
$V(x)=\mathbb{E}[V(x, \xi)]=\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{n}} & c^{\top} y \\ \text { s.t. } & A y+B x \leqslant b\end{array}\right]=\mathbb{E}\left[\begin{array}{ll}\max _{\lambda \in \mathbb{R}^{\ell}} & (B x-\boldsymbol{b})^{\top} \lambda \\ \text { s.t. } & A^{\top} \lambda+c=0\end{array}\right]$
\Leftrightarrow Back to the case with random cost \triangle The new cost depends on x : only local exact quantization.

Local exact quantization for constraints ?

Back to the 2-stage problem

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	$\boldsymbol{?}$	\checkmark
Uniform	\times	\times	\checkmark

Duality result
$V(x)=\mathbb{E}[V(x, \xi)]=\mathbb{E}\left[\begin{array}{ll}\min _{y \in \mathbb{R}^{n}} & c^{\top} y \\ \text { s.t. } & A y+B x \leqslant b\end{array}\right]=\mathbb{E}\left[\begin{array}{ll}\max _{\lambda \in \mathbb{R}^{\ell}} & (B x-\boldsymbol{b})^{\top} \lambda \\ \text { s.t. } & A^{\top} \lambda+c=0\end{array}\right]$
\Leftrightarrow Back to the case with random cost
\triangle The new cost depends on x : only local exact quantization.

Local exact quantization for constraints

Random cost

Recall that for a fixed x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \min _{y \in P_{x}} \check{c}_{N}^{\top} y
\end{aligned}
$$

where,

$$
\begin{gathered}
p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
\check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N] \\
P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
\end{gathered}
$$

Random constraints
Similarly, for a given c and x,

where,

Local exact quantization for constraints

Random cost

Recall that for a fixed x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\min _{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \\
& =\sum_{N \in \mathcal{N}\left(P_{x}\right)} p_{N} \min _{y \in P_{x}} \check{N}_{N}^{\top} y
\end{aligned}
$$

where,

$$
\begin{aligned}
& p_{N}:=\mathbb{P}[\boldsymbol{c} \in-\mathrm{ri} N] \\
& \check{c}_{N}:=\mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in-\mathrm{ri} N] \\
& P_{x}:=\left\{y \in \mathbb{R}^{m} \mid A y+B x \leqslant b\right\}
\end{aligned}
$$

Random constraints

Similarly, for a given c and x,

$$
\begin{aligned}
V(x) & =\mathbb{E}\left[\max _{\lambda \in D_{c}}(\boldsymbol{b}-\boldsymbol{B} x)^{\top} \lambda\right] \\
& =\sum_{N \in \mathcal{N}\left(D_{c}\right)} p_{N, x} \max _{\lambda \in D_{c}} \psi_{N, x}^{\top} \lambda
\end{aligned}
$$

where,

$$
\begin{aligned}
p_{N, x} & :=\mathbb{P}[\boldsymbol{b}-\boldsymbol{B} x \in \text { ri } N] \\
\psi_{N, x} & :=\mathbb{E}[\boldsymbol{b}-\boldsymbol{B} x \mid \boldsymbol{b}-\boldsymbol{B} x \in \text { ri } N] \\
D_{c} & :=\left\{\lambda \in \mathbb{R}^{\prime} \mid A^{\top} \lambda+c=0\right\}
\end{aligned}
$$

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage - Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Partitioned cost-to-go functions (recalls)

ξ_{t} continuous

$$
V(x)=\mathbb{E}[\hat{V}(x, \xi)]
$$

$\check{\xi}_{t}$ partitioned

$$
V_{\mathcal{P}}(x)=\sum_{P \in \mathcal{P}} \mathbb{P}[P] \hat{V}(x, \mathbb{E}[\boldsymbol{\xi} \mid P])
$$

Partitioned cost-to-go functions (recalls)

ξ_{t} continuous

$$
V(x)=\mathbb{E}[\hat{V}(x, \xi)]
$$

$\check{\xi}_{t}$ partitioned

$$
V_{\mathcal{P}}(x)=\sum_{P \in \mathcal{P}} \mathbb{P}[P] \hat{V}(x, \mathbb{E}[\boldsymbol{\xi} \mid P])
$$

- $\hat{V}(x, \cdot)$ is convex

$$
\Leftrightarrow V_{\mathcal{P}} \leqslant V
$$

- $\hat{V}(\cdot, \mathbb{E}[\boldsymbol{\xi} \mid P])$ is polyhedral $\Rightarrow V_{\mathcal{P}}$ is polyhedral.

Adapted partition

Definition

A partition \mathcal{P} is adapted to x_{0} if

$$
V_{\mathcal{P}}\left(x_{0}\right)=V\left(x_{0}\right):=\mathbb{E}\left[\hat{V}\left(x_{0}, \boldsymbol{\xi}\right)\right]
$$

${ }^{1}$ Can be extended to generic random \boldsymbol{c} and finitely supported \boldsymbol{A}

Adapted partition

Definition

A partition \mathcal{P} is adapted to x_{0} if

$$
V_{\mathcal{P}}\left(x_{0}\right)=V\left(x_{0}\right):=\mathbb{E}\left[\hat{V}\left(x_{0}, \boldsymbol{\xi}\right)\right]
$$

Consider $x \in \mathbb{R}^{n}$ and $N \in \mathcal{N}\left(D_{q}\right)$ a normal cone of D_{q}. We define

$$
E_{N, x}:=\{\xi \in \equiv \mid b-B x \in \operatorname{ri} N\}
$$

Theorem (FL 2021)

$\mathcal{R}_{x}:=\left\{E_{N, x} \mid N \in \mathcal{N}\left(D_{q}\right)\right\}$ is adapted to x i.e. $V_{\mathcal{R}_{x}}(x)=V(x)$ In particular: if only \boldsymbol{B} and \boldsymbol{b} are stochastic, then there exists a universal and local exact quantization ${ }^{1}$.
Bonus: necessary and sufficient condition for a partition to be adapted
${ }^{1}$ Can be extended to generic random \boldsymbol{c} and finitely supported \boldsymbol{A}

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming
(4) Conclusion and perspectives

General framework for Adaptive Partition-based Methods

$$
\begin{aligned}
& \mathcal{P}^{0} \leftarrow\{\equiv\} ; \\
& \text { for } k=1 \cdots \infty \text { do }
\end{aligned}
$$

Let x^{k} be an optimal solution $\min _{x \in X} c_{1}^{\top} x+V_{\mathcal{P}^{k-1}}(x)$;
Let $\mathcal{P}_{x^{k}}$ a partition adapted to x^{k};
$\mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}} ;$
end
Algorithm 1: General framework for APM.

is equivalent to

$$
A y_{P}+\mathbb{E}[\boldsymbol{B} \mid P] x \leqslant \mathbb{E}[\boldsymbol{b} \mid P]
$$

General framework for Adaptive Partition-based Methods

$$
\mathcal{P}^{0} \leftarrow\{\equiv\} ;
$$

for $k=1 \cdots \infty$ do
Let x^{k} be an optimal solution $\min _{x \in X} c_{1}^{\top} x+V_{\mathcal{P}^{k-1}}(x)$;
Let $\mathcal{P}_{x^{k}}$ a partition adapted to x^{k};
$\mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}} ;$
end
Algorithm 1: General framework for APM.

$$
\min _{x \in X} c_{1}^{\top} x+V_{\mathcal{P}}(x)
$$

is equivalent to

$$
\begin{aligned}
\min _{x \in X,\left(y_{P}\right)_{P \in \mathcal{P}}} & c_{1}^{\top} x+\sum_{P \in \mathcal{P}} \mathbb{P}[P] c_{2}^{\top} y_{P} \\
& A y_{P}+\mathbb{E}[\boldsymbol{B} \mid P] x \leqslant \mathbb{E}[\boldsymbol{b} \mid P] \quad, \forall P \in \mathcal{P}
\end{aligned}
$$

A (partial) comparison between partition based results

Paper	Song, Luedtke (2015)	Ramirez-Pico, Moreno (2020)	FL (2021)
Non-finite supp $\boldsymbol{\xi})$	\times	\checkmark	\checkmark
Explicit oracle	\checkmark	\times	\checkmark
Proof of convergence	\checkmark	\times	\checkmark
Complexity result	\times	\times	\checkmark
Fast iteration	\checkmark	\times	\times

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

$$
\begin{array}{r}
V(x) \\
V_{\mathcal{P}}(x)
\end{array}
$$

$X \longrightarrow \quad-x$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

$V(x)$.
$V_{\mathcal{P}}(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.
$V(x)$

Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

$$
V(x)_{\Lambda}
$$

$V(x)_{\wedge}$
$V_{\mathcal{P}}(x)$

X

- x
X
- x

Theorem (Convergence and complexity results)

If $X \cap \operatorname{dom}(V) \subset \mathbb{R}^{+}$is contained in a ball of diameter $M \in \mathbb{R}^{+}$and $x \rightarrow c_{1}^{\top} x+V(x)$ is Lipschitz with constant L then the partition based method finds an ε-solution in at most $\left(\frac{L M}{\varepsilon}+1\right)^{n}$ iterations.

Numerical Results - ProdMix

k	x_{k}	z_{L}^{k}	z_{U}^{k}	Gap	$\left\|\mathcal{P}_{k}^{\max }\right\|$
1	$(1333.33,66.67)$	-18666.67	-16939.71	9.3%	4
2	$(1441.41,59.57)$	-17873.01	-17383.73	2.7%	9
3	$(1399.05,57.91)$	-17789.88	-17659.19	0.74%	16
4	$(1379.98,56.64)$	-17744.67	-17708.00	0.20%	25
5	$(1371.36,55.71)$	-17718.96	-17709.05	0.056%	36
6	$(1375.55,56.21)$	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711 , with radius 2.2 .

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming
(4) Conclusion and perspectives

History of stochastic dual dynamic programming (SDDP)

- Designed by Pereira and Pinto in 1991, used to manage brazilian hydroelectricity network
- Proof of asymptotic convergence in the linear case (Philpott and Guan 2008) and in the convex case (Girardeau, Leclère, Philpott 2015)
- Complexity proof (Lan 2020, Zhang and Sun 2022)
- Plenty of variants: trajectory following dynamic programming algorithms
\Leftrightarrow All with finitely supported distribution

Trajectory Following Dynamic Programming

Thanks again Vincent!

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First forward pass : computing trajectory

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

First backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second forward pass : computing trajectory

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

second backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third forward pass : computing trajectory

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

third backward pass : refining approximation (adding cuts)

Trajectory Following Dynamic Programming

And so on...

Contributions on SDDP and its variants

\Leftrightarrow New framework called Trajectory Following Dynamic Programming (TFDP) encompassing at least 14 variants of SDDP
\Rightarrow Complexity proofs, new for most of those variants
\Leftrightarrow Do not require finite support assumption
\Leftrightarrow Allow approximation error
\Rightarrow Adapt to robust and risk averse cases

Some TFDP algorithms

Algorithm's name	Node selection: Choice $\boldsymbol{\xi}_{t}^{k}$	\mathcal{F}_{t}	\underline{V}_{t}^{k}	\bar{V}_{t}^{k}	Hypothesis	Complexity known
SDDP	Random sampling	Exact	Benders cuts	V_{t}	Convex	\checkmark
EDDP	Explorative	Exact	Benders cuts	V_{t}	Convex	\checkmark
APSDDP	Random sampling	Exact	Adaptive partition	V_{t}	Linear	*
SDDiP	Random sampling	Exact	Lagrangian or integer cuts	V_{t}	Mixed Integer Linear	*
MIDAS	Random sampling	Exact	Step cuts	V_{t}	Monotonic Mixed Integer	*
SLDP	Random sampling	Exact	Reverse norm cuts	V_{t}	Non-Convex	*
BDZ17	Problem child	Exact	Benders cuts	Epigraph as convex hull	Convex	*
BDZ18	Problem child	Exact	Benders \times Epigraph	Hypograph \times Benders	Convex-Concave	*
RDDP	Deterministic	Exact	Benders cuts	Epigraph as convex hull	Robust	*
ISDDP	Random sampling	Inexact	Inexact Lagrangian cuts	V_{t}	Convex	*
TDP	Problem child	Exact	Benders cuts	Min of quadratic	Convex	*
ZS19	Random or Problem	Regularized	Generalized conjugacy cuts	Norm cuts	Mixed Integer Convex	\checkmark
NDDP	Random or Problem	Regularized	Benders cuts	Norm cuts	Distributionally Robust	\checkmark
DSDDP	Random sampling	Exact	Benders cuts	Fenchel transform	Linear	*

Contents

(1) Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results
(2) Local and universal exact Quantization for constraints in 2-stage
- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
(3) Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Conclusion

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	\checkmark	\checkmark
Uniform	\times	\times	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4). \Rightarrow Polynomial time complexity results.
- Local exact quantization for \boldsymbol{B} and \boldsymbol{b}.
\Rightarrow Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5)
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6)

Conclusion

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	\checkmark	\checkmark
Uniform	\times	\times	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for \boldsymbol{c} in MSLP (Chap.4).
\Rightarrow Polynomial time complexity results.
- Local exact quantization for B and b.
\Rightarrow Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5)
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6)

Conclusion

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	\checkmark	\checkmark
Uniform	\times	\times	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for \boldsymbol{c} in MSLP (Chap.4).
\Rightarrow Polynomial time complexity results.
- Local exact quantization for \boldsymbol{B} and \boldsymbol{b}.
\Rightarrow Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6)

Conclusion

	\boldsymbol{A}	$(\boldsymbol{B}, \boldsymbol{b})$	\boldsymbol{c}
Local	\times	\checkmark	\checkmark
Uniform	\times	\times	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for \boldsymbol{c} in MSLP (Chap.4).
\Rightarrow Polynomial time complexity results.
- Local exact quantization for \boldsymbol{B} and \boldsymbol{b}.
\Rightarrow Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

Perspectives (Chap. 7)

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Perspectives (Chap. 7)

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Perspectives (Chap. 7)

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Perspectives (Chap. 7)

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Perspectives (Chap. 7)

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Thank you for listening! Any question ?

[^0]: ${ }^{1}$ No requirement for the first decision.
 ${ }^{2}$ Or asserts that MSLP is unfeasible.

[^1]: ${ }^{1}$ No requirement for the first decision.
 ${ }^{2} \mathrm{Or}$ asserts that MSLP is unfeasible.

[^2]: ${ }^{1}$ No requirement for the first decision.
 ${ }^{2}$ Or asserts that MSLP is unfeasible.

[^3]: ${ }^{1}$ No requirement for the first decision.

