
Multistage stochastic optimization
and polyhedral geometry

PhD Defense Maël Forcier
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Motivating example: hydroelectric energy management

Need low-carbon energy to stop global warming

Hydroelectricity is a controllable renewable energy

83% of electricity is hydroelectric in Brazil,
17% in France and 92% in Norway
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Motivating example: hydroelectric energy management

At step t

u water hustled

d demand

c cost of unmet demand

x0/x1 water in the reservoir

x capacity of the reservoir

w rain and runoff

min
u,x1

c(d − u)

s.t. 0 6 u 6 d

, ∀t ∈ [T ]

x1 6 x0 − u + w

, ∀t ∈ [T ]

0 6 x1 6 x

x0 fixed

General form min
x∈Rn

c>x

s.t. Ax 6 b
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Linear Programming and polyhedra

min
x∈Rn

c>x

s.t. Ax 6 b

Definition

Polyhedron:
Intersection of finite number of halfspaces

The set P = {x ∈ Rn |Ax 6 b} of
admissible solutions is a polyhedron.

A =



1 1

1 −1
− 1 −1
− 1 1
1 0
0 1
− 1 0


b =



1

1
1
1

0.5
0.5
− 1.2



x1 + x2 6 1 (1)

x1 − x2 6 1

(2)

− x1 − x2 6 1

(3)

− x1 + x2 6 1

(4)

x1 6 0.5

(5)

x2 6 0.5

(6)

x1 > −1.2

(7)
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23

1
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But renewables are inherently stochastic !

Rain, runoff, cost and demand are random.

At step t

ut water hustled

dt demand

ct cost of unmet demand

xt water in the reservoir

x capacity of the reservoir

wt rain and runoff

min
ut ,xt

E
[

T∑
t=1

ct(dt − ut)

]

s.t. 0 6 ut 6 dt , ∀t ∈ [T ]

xt+1 6 xt − ut + wt , ∀t ∈ [T ]

0 6 xt 6 x , ∀t ∈ [T ]

x0 fixed

σ(ut) ⊂ σ(cτ ,dτ ,wτ )τ6t , ∀t ∈ [T ]

σ(xt) ⊂ σ(cτ ,dτ ,wτ )τ6t︸ ︷︷ ︸
Measurability constraints

, ∀t ∈ [T ]
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Multistage stochastic linear programming (MSLP)

min
(xt)t∈[T ]

E
[ T∑
t=1

c>t xt
]

s.t. Atxt + Btxt−1 6 bt ∀t ∈ [T ]

σ(xt) ⊂ σ(cτ ,Aτ ,Bτ ,bτ )τ6t ∀t ∈ [T ]

x0 ≡ x0 given

ξt = (ct ,At ,Bt ,bt)t∈[T ] is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

x0  ξ1  x1  ξ2  · · · xT−1  ξT  xT

Equivalent form

min
x1:A1x1+B1x06b1

c>1 x1+E
[

min
x2:A2x2+B2x16b2

c>2 x2 + E
[
· · ·+ E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]]]
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Maël Forcier PhD Defense 14/12/2022 5 / 45



Multistage stochastic linear programming (MSLP)

min
(xt)t∈[T ]

E
[ T∑
t=1

c>t xt
]

s.t. Atxt + Btxt−1 6 bt ∀t ∈ [T ]

σ(xt) ⊂ σ(cτ ,Aτ ,Bτ ,bτ )τ6t ∀t ∈ [T ]

x0 ≡ x0 given

ξt = (ct ,At ,Bt ,bt)t∈[T ] is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

x0  ξ1  x1  ξ2  · · · xT−1  ξT  xT

Equivalent form

min
x1:A1x1+B1x06b1

c>1 x1+E
[

min
x2:A2x2+B2x16b2

c>2 x2 + E
[
· · ·+ E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]]]

Maël Forcier PhD Defense 14/12/2022 5 / 45



Dynamic Programming (Bellman 1966)

min
x1:A1x1+B1x06b1

c>1 x1+E

[
min

x2:A2x2+B2x16b2

c>2 x2 +E
[
· · ·+ E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]]]

E
[

min
xT :AT xT +BT xT−16bT

c>T xT
]

︸ ︷︷ ︸
VT (xT−1)

]]

E

[
min

x2:A2x2+B2x16b2

c>2 x2 + E
[
· · ·+ E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]

︸ ︷︷ ︸
VT (xT−1)

]
︸ ︷︷ ︸

V3(x2)

]

︸ ︷︷ ︸
V2(x1)

We set VT+1 ≡ 0 and Vt(xt−1) := E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt



Maël Forcier PhD Defense 14/12/2022 6 / 45



Dynamic Programming (Bellman 1966)

min
x1:A1x1+B1x06b1

c>1 x1+E

[
min

x2:A2x2+B2x16b2

c>2 x2 +E
[
· · ·+E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]

︸ ︷︷ ︸
VT (xT−1)

]]

E

[
min

x2:A2x2+B2x16b2

c>2 x2 + E
[
· · ·+ E

[
min

xT :AT xT +BT xT−16bT

c>T xT
]

︸ ︷︷ ︸
VT (xT−1)

]
︸ ︷︷ ︸

V3(x2)

]

︸ ︷︷ ︸
V2(x1)

We set VT+1 ≡ 0 and Vt(xt−1) := E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt


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Dynamic programming: finite case

time

x1

x2

Thank you Vincent for this animation.

å Continuous space: algorithms such as SDDP (discussed later).

å How to deal with continuous distributions ?
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Maël Forcier PhD Defense 14/12/2022 7 / 45



Dynamic programming: finite case

time

x1

x2

å Continuous space: algorithms such as SDDP (discussed later).

å How to deal with continuous distributions ?

Maël Forcier PhD Defense 14/12/2022 7 / 45



Dynamic programming: finite case

time

x1

x2

å Continuous space: algorithms such as SDDP (discussed later).

å How to deal with continuous distributions ?
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Maël Forcier PhD Defense 14/12/2022 7 / 45



Dynamic programming: finite case

time

x1

x2

å Continuous space: algorithms such as SDDP (discussed later).

å How to deal with continuous distributions ?
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Quantization of a MSLP
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Real problem

Vt(x) = E
[
V̂t

(
x , ξt

)]
= E

 min
y∈Rnt

ct>y + Vt+1(y)

s.t. Aty + Btx 6 bt


ξt continuous
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Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a
finitely supported (ξ̌t)t∈[T ] such that

Vt(x) = E
[
V̂t(x , ξt)

]
= E

[
V̂t(x , ξ̌t)

]
.

We call an exact quantization

uniform if it is locally exact at all x ∈ Rnt , and all t ∈ [T ].

universal if there exists a partition Pt,x such that the induced
quantization is exact at time t on x , for all distributions of (ξτ )τ∈[T ].

ξt continuous ξ̌t quantized

Maël Forcier PhD Defense 14/12/2022 9 / 45



Conditions for the existence of an exact quantization ?

Assume Vt+1 ≡ 0 and denote V := Vt , V̂ := V̂t and ξ := ξt for now.

V (x) = E
[
V̂
(
x , ξ
)]

= E

min
y∈Rn

c>y

s.t. Ay + Bx 6 b


We have an exact quantization if and only if there exists a finitely
supported noise ξ̌ such that

E
[
V̂ (x , ξ)

]
= E

[
V̂ (x , ξ̌)

]
.

(,A(, (B,b) (,c (,

Local ? ? ?

Uniform ? ? ?

Maël Forcier PhD Defense 14/12/2022 10 / 45



A first counter example

(,A(, (B,b) (,c (,

Local ? ? ?

Uniform ? ? ?

Let A = (−u), B ≡ (0), b ≡ (−1) where u ∼ U
(
[1, 2]

)
.

V̂ (x , ξ) =
min
y∈R

y

s.t. uy > 1
=

1

u

By strict convexity, for all partition P∑
P∈P

p̌P V̂
(
x , ξ̌P

)
< V (x) = E

[ 1

u

]
with p̌P = P

[
ξ ∈ P

]
, ξ̌P = E

[
ξ | ξ ∈ P

]
.

å There is no partition-based (local, uniform or universal) exact
quantization result for A non-finitely supported.

å From now on, A is deterministic: fixed recourse.
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Uniform exact quantization and polyhedrality
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V̂ (x , ξ) = min
y∈Rm

c>y

s.t. Ay + Bx 6 b

= min
y∈Rm

Qξ(x , y)

with Qξ(x , y) := c>y + I(x ,y)∈P .

V̂ (·, ξ) is polyhedral because
epi
(
V̂ (·, ξ)

)
is the projection of

epi(Qξ).

y

x

z

P

c

epi(Qξ)

epi
(
V̂ (·, ξ)

)

V (x) = E
[
V̂ (x , ξ)

]
=
∑

ξ∈supp(ξ̌) pξV̂ (x , ξ)

å If the noise is finitely supported, then V is polyhedral

å Existence of uniform exact quantization implies
polyhedrality of V .
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Counter examples with stochastic constraints

(,A(, (B,b) (,c (,

Local × ? ?

Uniform × ? ?

Stochastic B

V (x) = E


min
y∈Rm

y

s.t. ux − y 6 0

y > 1


= E

[
max(ux , 1)

]
=

{
1 if x 6 1
x
2 + 1

2x if x > 1

Stochastic b

V (x) = E


min
y∈Rm

y

s.t. y > u
x − y 6 0


= E

[
max(x ,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]

x if x > 1

å V is not polyhedral ⇒ No uniform exact quantization for non-finitely
supported B and b.

u is uniform on [0, 1]
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Remaining cases

V (x) = E

min
y∈Rm

c>y

s.t. Ay + Bx 6 b


(,A(, (B,b) (,c (,

Local × ? ?

Uniform × × ?

Theorem (FGL 2021)

If A, B and b are deterministic,
then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic,
then there exists a universal and local exact quantization.
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Reformulation of V (x) highlighting the role of the fiber Px

For a given x , (we still assume Vt+1 ≡ 0)

V (x) := E

min
y∈Rm

c>y

s.t. Ay + Bx 6 b


V (x) = E

[
min
y∈Px

c>y
]

where Px := {y ∈ Rm | Ay + Bx 6 b}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1,

y1 6 x , y2 6 x} x

y1

y2
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Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

•

NPx (y) for x = 0.3

• x1

x2

Px , y and NPx (y) for x = 0.3
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N (Px): partition of cost coherent with the min

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

−c1

−c2

Cost −c and N (Px) for x = 0.3

x1

x2

Px for x = 0.3
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Maël Forcier PhD Defense 14/12/2022 18 / 45



N (Px): partition of cost coherent with the min

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

−c1

−c2

Cost −c and N (Px) for x = 0.3

x1

x2

•

Px for x = 0.3
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Local and universal exact quantization for c

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
1c∈− riN min

y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
1c∈− riNc>

]
yN(x)

=
∑

N∈N (Px )

pN čN
>yN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

For N ∈ N (Px),

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]

where yN(x) ∈ arg miny∈Px
c>︸︷︷︸
∈− riN

y .

−c1

−c2

N (Px)

and pN čN

for x = 0.3

We replace the continuous cost c ,
by the discrete cost č .
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>yN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
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x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.7

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1.2

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.6
•1

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

x1

x2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.4

• •0.5 1

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.1
• • •
0 0.5 1

P and Px
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Maël Forcier PhD Defense 14/12/2022 20 / 45



x is no longer fixed but x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.4
• • •
0 0.5 1

P and Px
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What are the constant regions of x 7→ N (Px) ?

Proposition

There exists a collection C(P, π)
called the chamber complex whose
relative interior of cells are the
constant regions of x 7→ N (Px).

I.e, for σ ∈ C(P, π) and x , x ′ ∈ ri(σ), we

have N (Px) = N (Px′) =: Nσ

x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

−c1

−c2

Nσ for σ = [−0.5, 0]

−c1

−c2

Nσ for σ = [0, 0.5]

−c1

−c2

Nσ for σ = [0.5, 1]

−c1

−c2

Nσ for σ = [1,+∞)
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Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) | x∈π(F )

π(F )

P

π

x

y

Px

• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y) 7→ x .
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Maël Forcier PhD Defense 14/12/2022 22 / 45



Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) | x∈π(F )

π(F )

P

π

x

y

Px

x

•

Px

•
•F

•

•π(F )•
• •π(P)• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y) 7→ x .
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x

•

Px

•

•F ′

•

••π(F ′)

•F

•

•π(F )•
• •π(P)• •π(P)

••
σP,π(x)

where F(P) is the set of faces of P
and π is the projection (x , y) 7→ x .
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Common Refinement of Normal Fans
We can quantize c on each chamber.

Nσ and č

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

č>N y

For all x ′ ∈ ri(τ),

V (x ′) =
∑

N∈Nτ

pN min
y∈Px

č>N y

Nτ and č

We take the common refinement:

R :== {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈

pN min
y∈Px

č>N y
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Uniform exact quantization for c

Let’s sum up:

local exact quantization at x induced by N (Px),

x 7→ N (Px) is constant on each σ ∈ C(P, π),

local exact quantization at ri(σ) induced by Nσ,

local exact quantization at ri(σ) ∪ ri(τ) induced by Nσ ∧Nτ .

Theorem (FGL21, Uniform and universal quantization of the cost)

Let R =
∧

σ∈C(P,π)

−Nσ, then for all x ∈ Rn

V (x) =
∑
R∈R

p̌R min
y∈Px

č>R y

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
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Polyhedral characterization of V

Theorem (FGL 2021)

For all distributions of c , V is affine on each cell of C(P, π).

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

V (x) = σE
(
b − Bx

)
= sup

λ∈E
(b − Bx)>λ

where E := E
[
Dc
]

=
∫
DcP(dc) is the weighted fiber polyhedron

and Dc :=
{
λ |A>λ+ c = 0

}
the dual admissible set.

The weighted fiber polyhedron is a Minkowski integral with respect to the
distribution dP(c)
 extension of fiber polytope (uniform distribution) of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527–549, 1992.
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Explicit computation of the example

V (x) = E


min
y∈R2

c>y

s.t. ‖y‖1 6 1

y1 6 x

y2 6 x

 x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

x

V (x)
-0.5 0 0.5 1

θ2e−θ‖c‖1

4 dc

Different distributions of c :
uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖2

2
2γ2

2πγ2 dc
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Multistage uniform and universal exact quantization

Vt(x) = E

 min
y∈Rnt

z∈R

c>t y + Vt+1(y)

s.t. (x , y) ∈ Pt


with Qt(x , y) := Vt+1(y) + I(x,y)∈Pt

.

å Vt affine, x 7→ N (Px) constant
on C(epi(Qt), π

x,y ,z
x )

" epi(Qt) appears in the constraint
and depends on ct+1, · · · , cT !

Vt+1 affine on Pt+1 (by assumption)

Qt := (Rnt × Pt+1) ∧ F
(
Pt

)
Pt := C(Qt , π

x,y
x )

[FGL21, Lem. 4.1]: Pt 4 C(epi(Qt), π
x,y ,z
x )

å Vt affine on Pt , N (Px) constant on Pt

x

y

z

Pt

πx,y,z
x,y

(
epi(Qt )

)

Qt

epi(Vt+1)

epi(Qt)
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•
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•

•

•• • • •• • ••C
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x
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Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

Pt,ξ := C
(

(Rnt × Pt+1) ∧ F
(
Pt(ξ)

)
, π

xt−1,xt
xt−1

)
Pt :=

∧
ξt∈supp ξt

Pt,ξ

Theorem (FGL 21)

All results generalizes to MSLP with finitely supported stochastic
constraints.

å (Vt)t are affine on universal chamber complexes,
i.e. independent of the law of (ct)t

å We have an uniform and universal exact quantization.
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Earlier and new complexity results

Volume of a polytope

2-stage linear problem

Vol
(
{z ∈ Rd |Az 6 b}

)
or

Vol
(

Conv(v1, · · · , vn)
)

min
x∈Rn

c>1 x + E

min
y∈Rm

c>2 y

s.t. A2y + B2x 6 b2


s.t. A1x 6 b1

]P-complete:
Dyer and Frieze (1988)

Polynomial for fixed dimension
d : Lawrence (1991)
t t
t

]P-hard: Hanasusanto, Kuhn
and Wiesemann (2016)

Polynomial for fixed m

:
FGL (2021)
 Exact case
 Approximated case
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T , n2, · · · , nT , are fixed.1

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε-solution2 in polynomial
time in log( 1

ε ) with probability 1.

å Can be adapted to exact complexity when we can compute exactly
E
[
c |c ∈ C , (At ,Bt ,bt)=(A,B, b)

]
and P

[
c ∈ C |(At ,Bt ,bt)=(A,B, b)

]
.

Proof based on ellipsoid (Gröstchel, Lovász, Schrijver)
and upper bound theorems (McMullen, Stanley)

By SAA, we can solve MSLP, up to precision ε, in pseudo-polynomial time,
i.e. polynomial in 1

ε , with probability 1−α, when T , n1, · · · , nT are fixed.

1No requirement for the first decision.
2Or asserts that MSLP is unfeasible.
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T , n2, · · · , nT , are fixed.1

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε-solution2 in polynomial
time in log( 1

ε ) with probability 1.
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Local exact quantization for constraints ?

Back to the 2-stage problem

(,A(, (B,b) (,c (,

Local × ? X

Uniform × × X

Duality result

V (x) = E
[
V (x , ξ)

]
= E

min
y∈Rn

c>y

s.t. Ay + Bx 6 b

 = E

max
λ∈R`

(Bx − b)>λ

s.t. A>λ+ c = 0


å Back to the case with random cost

" The new cost depends on x : only local exact quantization.
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Local exact quantization for constraints

Random cost
Recall that for a fixed x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

where,

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]
Px := {y ∈ Rm |Ay + Bx 6 b}

Random constraints
Similarly, for a given c and x ,

V (x) = E
[

max
λ∈Dc

l
(b − Bx)>λ

]
=

∑
N∈N (Dc )

pN,x max
λ∈Dc

ψN,x
>λ

where,

pN,x := P
[
b − Bx ∈ riN

]
ψN,x := E

[
b − Bx | b − Bx ∈ riN

]
Dc := {λ ∈ Rl | A>λ+ c = 0}
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čN
>y

where,

pN := P
[
c ∈ − riN

]
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Maël Forcier PhD Defense 14/12/2022 32 / 45



Partitioned cost-to-go functions (recalls)

ξt continuous

V (x) = E
[
V̂ (x , ξ)

] ξ̌t partitioned

VP(x) =
∑

P∈P P
[
P
]
V̂
(
x ,E

[
ξ|P
])

V̂ (x , ·) is convex
å VP 6 V .

V̂
(
·,E
[
ξ|P
])

is polyhedral
å VP is polyhedral.

VP(x)

V (x)

x
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Adapted partition

Definition

A partition P is adapted to x0 if

VP(x0) = V (x0) := E
[
V̂ (x0, ξ)

] VP(x)

V (x)

x
x0

Consider x ∈ Rn and N ∈ N (Dq) a normal cone of Dq. We define

EN,x := {ξ ∈ Ξ | b − Bx ∈ riN}

Theorem (FL 2021)

Rx :=
{
EN,x | N ∈ N (Dq)

}
is adapted to x i.e. VRx (x) = V (x)

In particular: if only B and b are stochastic,
then there exists a universal and local exact quantization1.
Bonus: necessary and sufficient condition for a partition to be adapted

1Can be extended to generic random c and finitely supported A
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General framework for Adaptive Partition-based Methods

P0 ← {Ξ} ;
for k = 1 · · ·∞ do

Let xk be an optimal solution min
x∈X

c>1 x + VPk−1(x) ;

Let Pxk a partition adapted to xk ;

Pk ← Pk−1 ∧ Pxk ;

end
Algorithm 1: General framework for APM.

min
x∈X

c>1 x + VP(x)

is equivalent to

min
x∈X ,(yP)P∈P

c>1 x +
∑
P∈P

P
[
P
]
c>2 yP

AyP + E
[
B|P

]
x 6 E

[
b|P

]
, ∀P ∈ P
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A (partial) comparison between partition based results

Paper Song, Luedtke Ramirez-Pico, FL

(2015) Moreno (2020) (2021)

Non-finite supp(ξ) × X X
Explicit oracle X × X

Proof of convergence X × X
Complexity result × × X

Fast iteration X × ×
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

x0
x

V (x)

X
x0

x
X

V (x)

VP(x)

Theorem (Convergence and complexity results)

If X ∩ dom(V ) ⊂ R+ is contained in a ball of diameter M ∈ R+ and
x → c>1 x + V (x) is Lipschitz with constant L
then the partition based method finds an ε-solution in at most

(
LM
ε + 1

)n
iterations.
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Numerical Results - ProdMix

k xk zkL zkU Gap |Pmax
k |

1 (1333.33, 66.67) −18666.67 −16939.71 9.3% 4

2 (1441.41, 59.57) −17873.01 −17383.73 2.7% 9

3 (1399.05, 57.91) −17789.88 −17659.19 0.74% 16

4 (1379.98, 56.64) −17744.67 −17708.00 0.20% 25

5 (1371.36, 55.71) −17718.96 −17709.05 0.056% 36

6 (1375.55, 56.21) −17713.74 −17711.37 0.013% 49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100
times, each with 10 000 scenarios randomly drawn, yielding a 95%
confidence interval centered in −17711, with radius 2.2.
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History of stochastic dual dynamic programming (SDDP)

Designed by Pereira and Pinto in 1991, used to manage brazilian
hydroelectricity network

Proof of asymptotic convergence in the linear case (Philpott and Guan
2008) and in the convex case (Girardeau, Leclère, Philpott 2015)

Complexity proof (Lan 2020, Zhang and Sun 2022)

Plenty of variants: trajectory following dynamic programming
algorithms

å All with finitely supported distribution
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Trajectory Following Dynamic Programming

time

x1

x2

Thanks again Vincent !
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Maël Forcier PhD Defense 14/12/2022 40 / 45



Trajectory Following Dynamic Programming

time

x1

x2

First backward pass : refining approximation (adding cuts)
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Maël Forcier PhD Defense 14/12/2022 40 / 45



Trajectory Following Dynamic Programming

time

x1

x2

second backward pass : refining approximation (adding cuts)
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Maël Forcier PhD Defense 14/12/2022 40 / 45



Trajectory Following Dynamic Programming

time

x1

x2

third backward pass : refining approximation (adding cuts)
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Trajectory Following Dynamic Programming
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Contributions on SDDP and its variants

å New framework called Trajectory Following Dynamic Programming
(TFDP) encompassing at least 14 variants of SDDP

å Complexity proofs, new for most of those variants

å Do not require finite support assumption

å Allow approximation error

å Adapt to robust and risk averse cases
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Some TFDP algorithms
Algorithm’s Node selection: Complexity

name Choice ξkt Ft V k
t V

k
t Hypothesis known

SDDP Random sampling Exact Benders cuts Vt Convex 4

EDDP Explorative Exact Benders cuts Vt Convex 4

APSDDP Random sampling Exact Adaptive partition Vt Linear 6

SDDiP Random sampling Exact Lagrangian or integer cuts Vt Mixed Integer Linear 6

MIDAS Random sampling Exact Step cuts Vt Monotonic Mixed Integer 6

SLDP Random sampling Exact Reverse norm cuts Vt Non-Convex 6

BDZ17 Problem child Exact Benders cuts Epigraph as convex hull Convex 6

BDZ18 Problem child Exact Benders × Epigraph Hypograph × Benders Convex-Concave 6

RDDP Deterministic Exact Benders cuts Epigraph as convex hull Robust 6

ISDDP Random sampling Inexact Inexact Lagrangian cuts Vt Convex 6

TDP Problem child Exact Benders cuts Min of quadratic Convex 6

ZS19 Random or Problem Regularized Generalized conjugacy cuts Norm cuts Mixed Integer Convex 4

NDDP Random or Problem Regularized Benders cuts Norm cuts Distributionally Robust 4

DSDDP Random sampling Exact Benders cuts Fenchel transform Linear 6

Maël Forcier PhD Defense 14/12/2022 42 / 45



Contents

1 Universal Exact Quantization for cost
Local in 2-stage
Uniform in 2-stage
Uniform in multistage
Complexity results

2 Local and universal exact Quantization for constraints in 2-stage
Adapted partitions
Adaptive Partition-based Methods
Convergence, complexity and numerical results

3 Trajectory Following Dynamic Programming

4 Conclusion and perspectives
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Conclusion

(,A(, (B,b) (,c (,

Local × X X

Uniform × × X

Links with fundamental polyhedral geometry, regular subdivisions and
fiber polytope (Chap. 3 and 4).

Uniform and universal exact quantization for c in MSLP (Chap.4).
å Polynomial time complexity results.

Local exact quantization for B and b.
å Adaptive Partition-based Methods (APM) for general distribution:

solves small 2SLP with high precision (Chap. 5).

Extension of Stochastic Dual Dynamic Programming algorithms and
more generally all Trajectory Following Dynamic Programming
algorithm for non finitely supported distribution (Chap. 6).
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Perspectives (Chap. 7)

Higher order simplex algorithm on the chamber complex for 2SLP,

2-time scale MSLP, nested fiber polyhedra and convex bodies,

Reintroduce approximation or sampling,

Exact quantization for stochastic integer linear problems,

Understanding the complexity of MSLP.
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Maël Forcier PhD Defense 14/12/2022 44 / 45



Perspectives (Chap. 7)

Higher order simplex algorithm on the chamber complex for 2SLP,

2-time scale MSLP, nested fiber polyhedra and convex bodies,

Reintroduce approximation or sampling,

Exact quantization for stochastic integer linear problems,

Understanding the complexity of MSLP.
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Thank you for listening ! Any question ?
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