Multistage stochastic optimization and polyhedral geometry

PhD Defense Maël Forcier

advised by Stéphane Gaubert and Vincent Leclère, supervised by Jean-Philippe Chancelier. December 14th 2022

ParisTech

Maël Forcier

14/12/2022 1/45

< 67 →

- Need low-carbon energy to stop global warming
- Hydroelectricity is a controllable renewable energy
- 83% of electricity is hydroelectric in Brazil, 17% in France and 92% in Norway

PhD Defense

- u water hustled
- d demand
- c cost of unmet demand
- x_0/x_1 water in the reservoir
- \overline{x} capacity of the reservoir
- w rain and runoff

 $\min_{u,x_1} c(d-u)$ s.t. $0 \leq u \leq d$ $x_1 \leq x_0 - u + w$ $0 \leq x_1 \leq \overline{x}$ x_0 fixed

< A >

At step t

- u_t water hustled
- *d_t* demand
- *c_t* cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff

 $\min_{u_t, x_t} \sum_{t=1}^{T} c_t (d_t - u_t)$ s.t. $0 \leq u_t \leq d_t$, $\forall t \in [T]$ $x_{t+1} \leq x_t - u_t + w_t$, $\forall t \in [T]$ $0 \leq x_t \leq \overline{x}$, $\forall t \in [T]$ x_0 fixed

< A >

At step t

- *u_t* water hustled
- *d*_t demand
- c_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff

 $\min_{\substack{u_t, x_t \\ t=1}} \sum_{t=1}^{T} c_t (d_t - u_t)$ s.t. $0 \leq u_t \leq d_t$, $\forall t \in [T]$ $x_{t+1} \leq x_t - u_t + w_t$, $\forall t \in [T]$ $0 \leq x_t \leq \overline{x}$, $\forall t \in [T]$ x_0 fixed

General form

 $\min_{x \in \mathbb{R}^n} c^\top x$
s.t. $Ax \le b$

< 67 →

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

< (F)

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

< (F)

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

< A >

$\min_{x \in \mathbb{R}^n} c^\top x$ s.t. $Ax \leq b$

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

< A >

$\min_{x \in \mathbb{R}^n} c^\top x$ s.t. $Ax \leq b$

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \\ & & \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ & & & \\$$

< 47 ►

$\min_{x \in \mathbb{R}^n} c^\top x$ s.t. $Ax \leq b$

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ x_1 \leqslant 0.5 & (5) \\ x_2 \leqslant 0.5 & (6) \\ (7) \end{pmatrix} \begin{pmatrix} x_2 \\ + \\ 5 - \star x_1 \\ 5 - \star x_1 \\ 3 \\ (7) \end{pmatrix}$$

< 47 ►

$\min_{x \in \mathbb{R}^n} c^\top x$ s.t. $Ax \leq b$

Definition

Polyhedron: Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ of admissible solutions is a polyhedron.

< 47 ►

But renewables are inherently stochastic !

Rain, runoff, cost and demand are random.

At step t

- *u_t* water hustled
- *d_t* demand
- c_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff

 $\min_{u_t, x_t} \sum_{t=1}^{T} c_t (d_t - u_t)$ s.t. $0 \leq u_t \leq d_t$, $\forall t \in [T]$ $x_{t+1} \leq x_t - u_t + w_t$, $\forall t \in [T]$ $0 \leq x_t \leq \overline{x}$, $\forall t \in [T]$ x_0 fixed

< (F) >

But renewables are inherently stochastic !

Rain, runoff, cost and demand are random.

At step t

- **u**_t water hustled
- **d**_t demand
- **c**_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff

$$\min_{\boldsymbol{u}_{t}, \boldsymbol{x}_{t}} \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_{t} (\boldsymbol{d}_{t} - \boldsymbol{u}_{t}) \Big]$$

s.t. $0 \leq \boldsymbol{u}_{t} \leq \boldsymbol{d}_{t}$, $\forall t \in [T]$
 $\boldsymbol{x}_{t+1} \leq \boldsymbol{x}_{t} - \boldsymbol{u}_{t} + \boldsymbol{w}_{t}$, $\forall t \in [T]$
 $0 \leq \boldsymbol{x}_{t} \leq \overline{\boldsymbol{x}}$, $\forall t \in [T]$
 $\boldsymbol{x}_{0} \equiv \boldsymbol{x}_{0}$ given
 $\sigma(\boldsymbol{u}_{t}) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{d}_{\tau}, \boldsymbol{w}_{\tau})_{\tau \leq t}$, $\forall t \in [T]$
 $\underline{\sigma(\boldsymbol{x}_{t}) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{d}_{\tau}, \boldsymbol{w}_{\tau})_{\tau \leq t}}$, $\forall t \in [T]$

Measurability constraints

< @ >

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

$\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decisi

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} c_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1}c_1^{\top}x_1+\mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2}c_2^{\top}x_2+\mathbb{E}\left[\cdots+\mathbb{E}\left[\min_{x_T:A_T\times \tau+B_T\times \tau-1\leqslant b_T}c_T^{\top}x_T\right]\right]\right]$$

< A >

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$\mathbf{x_0} \rightsquigarrow \mathbf{\xi_1} \rightsquigarrow \mathbf{x_1} \rightsquigarrow \mathbf{\xi_2} \rightsquigarrow \cdots \rightsquigarrow \mathbf{x_{T-1}} \rightsquigarrow \mathbf{\xi_T} \rightsquigarrow \mathbf{x_T}$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E} \left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E} \left[\cdots + \mathbb{E} \left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} c_T^\top x_T \right] \right] \right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_T\times T+B_T\times T-1\leqslant b_T} c_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} c_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E} \left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E} \left[\cdots + \mathbb{E} \left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} c_T^\top x_T \right] \right] \right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E} \left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2 + \mathbb{E} \left[\cdots + \mathbb{E} \left[\min_{x_T:A_T\times \tau + B_T\times \tau - 1\leqslant b_T} c_T^\top x_T \right] \right] \right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^{\top} \boldsymbol{x}_1 + \mathbb{E} \left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^{\top} \boldsymbol{x}_2 + \mathbb{E} \left[\cdots + \mathbb{E} \left[\min_{x_T:A_T\times_T+B_T\times_T-1\leqslant b_T} \boldsymbol{c}_T^{\top} \boldsymbol{x}_T \right] \right] \right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^{\top} \boldsymbol{x}_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^{\top} \boldsymbol{x}_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_T\times \tau + B_T\times \tau - 1\leqslant b_T} \boldsymbol{c}_T^{\top} \boldsymbol{x}_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \boldsymbol{\xi}_1 \rightsquigarrow x_1 \rightsquigarrow \boldsymbol{\xi}_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \boldsymbol{\xi}_T \rightsquigarrow x_T$$

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^{\top} \boldsymbol{x}_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^{\top} \boldsymbol{x}_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_T\times \tau + B_T\times \tau_{-1}\leqslant b_T} \boldsymbol{c}_T^{\top} \boldsymbol{x}_T\right]\right]\right]$$
Maël Forcier
PhD Defense
14/12/2022 5/45

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1}\boldsymbol{c}_1^{\top}x_1+\mathbb{E}\left[\min_{x_2:\boldsymbol{A}_2x_2+\boldsymbol{B}_2x_1\leqslant \boldsymbol{b}_2}\boldsymbol{c}_2^{\top}x_2+\mathbb{E}\left[\cdots+\mathbb{E}\left[\min_{x_T:\boldsymbol{A}_Tx_T+\boldsymbol{B}_Tx_{T-1}\leqslant \boldsymbol{b}_T}\boldsymbol{c}_T^{\top}x_T\right]\right]\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

Maël Forcier

14/12/2022 6/45

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^{\top}x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^{\top}x_2 + \mathbb{E}\left[\cdots + \underbrace{\mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} \boldsymbol{c}_T^{\top}x_T\right]}_{V_{\mathcal{T}}(x_{T-1})}\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

Maël Forcier

14/12/2022 6/45

< A >

$$\underbrace{\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1}_{x_1:A_1x_1+B_1x_0\leqslant b_1} e_2^\top x_1+\mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} c_2^\top x_2+\mathbb{E}\left[\cdots+\mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant b_T} c_T^\top x_T\right]\right]\right]}_{V_T(x_{T-1})}_{V_3(x_2)}$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

< @ >

Thank you Vincent for this animation.

< 67 →

< 67 →

< 67 ►

< 67 ►

Dynamic programming: finite case

Dynamic programming: finite case

► Continuous space: algorithms such as SDDP (discussed later).

Visel Ford	ner

14/12/2022 7/45

Dynamic programming: finite case

➡ Continuous space: algorithms such as SDDP (discussed later).

How to deal with continuous distributions ?

Maël Forcier

PhD Defense

< @ →

Quantization of a MSLP Real problem $V_t(x) = \mathbb{E}[\hat{V}_t(x,\xi_t)] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & c_t^{\top}y + V_{t+1}(y) \\ \text{s.t.} & A_ty + B_tx \leq b_t \end{bmatrix}$

 ξ_t continuous

< (F) >

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & c_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leq \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1, \cdots, ξ^N drawn by Monte Carlo (ex Shapiro 2011)

 ξ_t continuous

SAA N = 20

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & c_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leq \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1, \cdots, ξ^N drawn by Monte Carlo (ex Shapiro 2011)

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x,\check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P} \big[\boldsymbol{\xi}_t \in P \big]$ and $\check{\xi}_{t,P} := \mathbb{E} \big[\boldsymbol{\xi}_t \, | \, \boldsymbol{\xi}_t \in P \big]$

 $\boldsymbol{\xi}_t$ continuous

SAA N = 20

Partition-based

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \boldsymbol{\xi}_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leqslant \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1, \cdots, ξ^N drawn by Monte Carlo (ex Shapiro 2011)

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x,\check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P}[\boldsymbol{\xi}_t \in P]$ and $\check{\xi}_{t,P} := \mathbb{E}[\boldsymbol{\xi}_t | \boldsymbol{\xi}_t \in P]$ If $\boldsymbol{\xi} \mapsto \hat{V}(x, \boldsymbol{\xi})$ is convex, $V_{t,P}(x) \leq V_t(x)$ (Jensen, Kuhn) Partition-based

 ξ_t continuous

SAA N = 20

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $(\xi_t)_{t \in [T]}$ such that

$$V_t(x) = \mathbb{E}\big[\hat{V}_t(x,\xi_t)\big] = \mathbb{E}\big[\hat{V}_t(x,\check{\xi}_t)\big].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition $\mathcal{P}_{t,x}$ such that the induced quantization is exact at time t on x, for all distributions of $(\xi_{\tau})_{\tau \in [T]}$.

Conditions for the existence of an exact quantization ?

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now.

$$V(x) = \mathbb{E}\left[\hat{V}(x,\xi)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^n} & c^\top y\\ \text{s.t.} & Ay + Bx \leq b\end{bmatrix}$$

We have an exact quantization if and only if there exists a finitely supported noise $\check{\xi}$ such that

$$\mathbb{E}\big[\hat{V}(x,\boldsymbol{\xi})\big] = \mathbb{E}\big[\hat{V}(x,\boldsymbol{\xi})\big].$$

	A	(B , b)	С
Local	?	?	?
Uniform	?	?	?

	Α	(B , b)	с
Local	?	?	?
Uniform	?	?	?

Let $\boldsymbol{A} = (-\boldsymbol{u}), \ \boldsymbol{B} \equiv (0), \ \boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}}}{\sup_{s.t.} uy \ge 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{u}\right]$$

with $\check{p}_P = \mathbb{P}ig[oldsymbol{\xi} \in P ig]$, $\check{\xi}_P = \mathbb{E}ig[oldsymbol{\xi} \,|\, oldsymbol{\xi} \in P ig]$.

There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.

From now on, A is deterministic: fixed recourse.

Maël Forcier

PhD Defense

14/12/2022 11/45

	Α	(B , b)	с
Local	?	?	?
Uniform	?	?	?

Let $\boldsymbol{A} = (-\boldsymbol{u}), \ \boldsymbol{B} \equiv (0), \ \boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2]).$

$$\hat{V}(x,\xi) = rac{\min_{y \in \mathbb{R}}}{\sup_{s.t.}} rac{y}{uy \ge 1} = rac{1}{u}$$

By strict convexity, for all partition $\ensuremath{\mathcal{P}}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\Big[\frac{1}{u}\Big]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in \boldsymbol{P}], \, \check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in \boldsymbol{P}].$

There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.

From now on, A is deterministic: fixed recourse.

Maël Forcier

	Α	(B , b)	с
Local	?	?	?
Uniform	?	?	?

Let $\boldsymbol{A} = (-\boldsymbol{u}), \ \boldsymbol{B} \equiv (0), \ \boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2]).$

$$\hat{\mathcal{V}}(x,\xi) = rac{\min_{y \in \mathbb{R}}}{\sup_{s.t.}} rac{y}{uy \ge 1} = rac{1}{u}$$

By strict convexity, for all partition $\ensuremath{\mathcal{P}}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in \boldsymbol{P}], \ \check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in \boldsymbol{P}].$

There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.

From now on, A is deterministic: fixed recourse.

Maël Forcier

PhD Defense

14/12/2022 11/45

	Α	(B , b)	с
Local	×	?	?
Uniform	×	?	?

Let $\boldsymbol{A} = (-\boldsymbol{u}), \ \boldsymbol{B} \equiv (0), \ \boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2]).$

$$\hat{\mathcal{V}}(x,\xi) = rac{\min_{y \in \mathbb{R}}}{\sup_{s.t.}} rac{y}{uy \ge 1} = rac{1}{u}$$

By strict convexity, for all partition $\ensuremath{\mathcal{P}}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in \boldsymbol{P}], \, \check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in \boldsymbol{P}].$

- There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.
 - From now on, A is deterministic: fixed recourse.

Maël Forcier

PhD Detens

14/12/2022 11/45

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $Ay + Bx \leq b$

14/12/2022 12/45

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$

14/12/2022 12/45

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 $\hat{V}(\cdot,\xi)$ is polyhedral because
epi $(\hat{V}(\cdot,\xi))$ is the projection of
epi (Q^{ξ}) .

< 67 →

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 $\hat{V}(\cdot,\xi)$ is polyhedral because
epi $(\hat{V}(\cdot,\xi))$ is the projection of
epi (Q^{ξ}) .
 $V(x) = \mathbb{E}[\hat{V}(x,\xi)] = \sum_{\xi \in \text{supp}(\xi)} p_{\xi} \hat{V}(x,\xi)$

 \blacktriangleright If the noise is finitely supported, then V is polyhedral

ŵ

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 \cdot, ξ) is polyhedral because
 $(\hat{V}(\cdot,\xi))$ is the projection of
 (Q^{ξ}) .

$$\mathcal{V}(x) = \mathbb{E}\left[\hat{V}(x, \boldsymbol{\xi})\right] = \sum_{\boldsymbol{\xi} \in \mathsf{supp}(\check{\boldsymbol{\xi}})} p_{\boldsymbol{\xi}} \hat{V}(x, \boldsymbol{\xi})$$

- \blacktriangleright If the noise is finitely supported, then V is polyhedral
- Existence of uniform exact quantization implies polyhedrality of V.

Maël Forcier

epi epi

PhD Defense

14/12/2022 12/45

	Α	(B , b)	С
Local	×	?	?
Uniform	×	?	?

Maël Forcier

	Α	(B , b)	С
Local	×	?	?
Uniform	×	?	?

Stochastic
$$\boldsymbol{B}$$

 $V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \boldsymbol{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$
 $= \mathbb{E} \begin{bmatrix} \max(\boldsymbol{u}x, 1) \end{bmatrix}$
 $= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$

 \boldsymbol{u} is uniform on [0,1]

Maël Forcier

	Α	(B , b)	С
Local	×	?	?
Uniform	×	?	?

Stochastic \boldsymbol{B} $V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \boldsymbol{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$ $= \mathbb{E} \begin{bmatrix} \max(\boldsymbol{u}x, 1) \end{bmatrix}$ $= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$

Stochastic **b**

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ s.t. & y \ge u \\ & x - y \le 0 \end{bmatrix}$$

$$= \mathbb{E} \begin{bmatrix} \max(x, u) \end{bmatrix}$$

$$= \begin{cases} \frac{1}{2} & \text{if } x \le 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \ge 1 \end{cases}$$

u is uniform on [0, 1]

Maël Forcier

14/12/2022 13/45

V is not polyhedral ⇒ No uniform exact quantization for non-finitely supported B and b.

 $\boldsymbol{\textit{u}}$ is uniform on [0,1]

V is not polyhedral ⇒ No uniform exact quantization for non-finitely supported B and b.

 $\boldsymbol{\textit{u}}$ is uniform on [0,1]

Remaining cases

14/12/2022 14/45

< @ >

Remaining cases

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^\top y \\ \text{s.t.} & \boldsymbol{A}y + \boldsymbol{B}x \leq \boldsymbol{b} \end{bmatrix} \qquad \frac{\boldsymbol{A} & (\boldsymbol{B}, \boldsymbol{b}) & \boldsymbol{c} \\ \hline \text{Local} & \times & ? & \boldsymbol{\checkmark} \\ \hline \text{Uniform} & \times & \times & \boldsymbol{\checkmark} \end{bmatrix}$$

Theorem (FGL 2021)

If A, B and b are deterministic,

then there exists a universal and uniform exact quantization.

< 67 →

1 1 1

Remaining cases

1 1

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic, then there exists a universal and local exact quantization.

Contents of the manuscript and articles

Chapter 3:

Chapter 4:

M. Forcier, S. Gaubert, V. Leclère Exact quantization of multistage stochastic linear problems, *arXiv preprint arXiv:2107.09566 (2021)*, Best student paper, ECSO-CMS 2022, Venice.

Chapter 5:

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization,

Operation Research Letters, to appear (2022).

Chapter 6:

M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions,

HAL Id: hal-03683697 (2022).

Maël Forcier

PhD Defense

14/12/2022 15/45

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Reformulation of V(x) highlighting the role of the fiber P_x For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^\top y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

 $V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right] \quad \text{where} \quad P_{x} := \{y \in \mathbb{R}^{m} \mid Ay + Bx \leqslant b\}$

Illustrative running example:

 $P_{\mathsf{x}} := \{ y \in \mathbb{R}^m \mid \|y\|_1 \leq 1, \\ y_1 \leq x, \ y_2 \leq x \}$

Reformulation of V(x) highlighting the role of the fiber P_x For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^\top y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

 $V(x) = \mathbb{E}\left[\min_{y \in P_x} \boldsymbol{c}^\top y\right]$ where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leq b\}$

Illustrative running example:

 $P_{x} := \{ y \in \mathbb{R}^{m} \mid \|y\|_{1} \leq 1, \\ y_{1} \leq x, \ y_{2} \leq x \}$

Reformulation of V(x) highlighting the role of the fiber P_x For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} \boldsymbol{c}^\top y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

 $V(x) = \mathbb{E}\left[\min_{y \in P_x} \boldsymbol{c}^\top y\right]$ where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

$$\begin{aligned} & \mathcal{P}_{\mathsf{x}} := \{ y \in \mathbb{R}^m \mid \|y\|_1 \leqslant 1, \\ & y_1 \leqslant x, \ y_2 \leqslant x \} \end{aligned}$$

Normal fan $\mathcal{N}(P_x)$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

Normal fan $\mathcal{N}(P_x)$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

Normal fan $\mathcal{N}(P_x)$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

$$P_x$$
, y and $N_{P_x}(y)$ for $x = 0.3$
Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

 $\mathcal{N}(P_x) := \{N_{P_x}(y) \mid y \in P_x\}$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, \ c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

Proposition

If P_x is bounded, $\{ri(N) \mid N \in \mathcal{N}(P_x)\}$ is a partition of \mathbb{R}^m .

$$\mathsf{P}_{\mathsf{x}}$$
 and $\mathcal{N}(\mathsf{P}_{\mathsf{x}})$ for $x = 0.3$

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

----- X1

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{\mathbf{x}}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $\xrightarrow{x_2}$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{x}}\boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 $P_{\rm x}$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{\mathbf{x}}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

14/12/2022 19/45

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$ where $y_{N}(x) \in \operatorname{arg\,min}_{y \in P_{x}} \underbrace{\boldsymbol{c}^{\top}_{\in -\operatorname{ri} N}}_{\in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
 $- \underbrace{\boldsymbol{c}_{2}}_{i}$
 $\mathcal{N}(P_{x})$ for $x = 0.3$

14/12/2022 19/45

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} \boldsymbol{y}\right]$$

= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} \boldsymbol{y}\right]$ where $y_{N}(x) \in \operatorname{arg\,min}_{y \in P_{x}} \underbrace{\boldsymbol{c}^{\top}}_{\in -\operatorname{ri} N} \boldsymbol{y}$.
= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$

$$\star$$

 $\mathcal{N}(P_x)$ and $p_N \check{c}_N$ for $x = 0.3$

or
$$N \in \mathcal{N}(P_x)$$
, $p_N := \mathbb{P}ig[oldsymbol{c} \in -\operatorname{ri} Nig]$ $\check{c}_N := \mathbb{E}ig[oldsymbol{c} \mid oldsymbol{c} \in -\operatorname{ri} Nig]$

We replace the continuous cost c, by the discrete cost \check{c} .

F

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$ where $y_{N}(x) \in \operatorname{arg min}_{y \in P_{x}} \underbrace{\boldsymbol{c}^{\top}}_{\in -\operatorname{ri} N} y$.
= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$
 $p_{N} \check{c}_{N} \text{ for } x = 0.3$

For $N \in \mathcal{N}(P_x)$, $p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$ $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

We replace the continuous cost c, by the discrete cost \check{c} .

Contents

Universal Exact Quantization for cost
Local in 2-stage

- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

*y*₂

< (F) >

► X

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$${\sf P}_{\sf x}:=\{y\mid Ay+Bx\leqslant b\} \hspace{1em} {
m and} \hspace{1em} {\sf P}:=\{(x,y)\mid Ay+Bx\leqslant b\}$$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$${m P}_{m x}:=\{y\mid Ay+Bx\leqslant b\} \hspace{1em} ext{and} \hspace{1em} {m P}:=\{(x,y)\mid Ay+Bx\leqslant b\}$$

$$P_{\mathbf{x}} := \{ y \mid Ay + Bx \leq b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \leq b \}$$

$$\xrightarrow{P_{\mathbf{x}}} -c_{1} \xrightarrow{Y_{2}} + -c_{1} \xrightarrow{Y_{2}} + P_{\mathbf{x}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

14/12/2022 20 / 45

$$P_{\mathbf{x}} := \{ y \mid Ay + Bx \leq b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \leq b \}$$

$$\xrightarrow{P_{\mathbf{x}}} -c_{1} \xrightarrow{P_{\mathbf{x}}} d_{\mathbf{x}} + \cdots + P_{\mathbf{x}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} d_{\mathbf{x}} + \mathcal{N}(P_{\mathbf{x}}) \xrightarrow{P_{\mathbf{x}}} d_{\mathbf{x}} + \mathcal{N}(P_{\mathbf{x}})$$

$$P_{\mathbf{x}} := \{ y \mid Ay + Bx \leq b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \leq b \}$$

$$\xrightarrow{P_{\mathbf{x}}} -c_{1} \xrightarrow{y_{2}} + -c_{1} \xrightarrow{y_{2}} + P_{\mathbf{x}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

$$\xrightarrow{P_{\mathbf{x}}} \text{ and } \mathcal{N}(P_{\mathbf{x}})$$

< A >

$$P_{\mathsf{x}} := \{ y \mid Ay + Bx \leqslant b \} \text{ and } P := \{ (x, y) \mid Ay + Bx \leqslant b \}$$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$${\sf P}_{\sf x}:=\{y\mid Ay+Bx\leqslant b\} \hspace{1em} {
m and} \hspace{1em} {\sf P}:=\{(x,y)\mid Ay+Bx\leqslant b\}$$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

$$P_x := \{y \mid Ay + Bx \leqslant b\}$$
 and $P := \{(x, y) \mid Ay + Bx \leqslant b\}$

What are the constant regions of $x \mapsto \mathcal{N}(P_x)$?

Proposition

There exists a collection $\mathcal{C}(P,\pi)$ called the chamber complex whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}(P_x)$.

I.e, for
$$\sigma \in C(P, \pi)$$
 and $x, x' \in ri(\sigma)$ *, we have* $\mathcal{N}(P_x) = \mathcal{N}(P_{x'}) =: \mathcal{N}_{\sigma}$

 \mathcal{N}_{σ} for $\sigma = [-0.5, 0]$ \mathcal{N}_{σ} for $\sigma = [0, 0.5]$

 \mathcal{N}_{σ} for $\sigma = [0.5, 1]$ \mathcal{N}_{σ} for $\sigma = [1, +\infty)$

< A >

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

 $\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

< A >

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

14/12/2022 22/45

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.
Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

< (F) >

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

< (F) >

Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex $C(P, \pi)$ of P along π is

 $\mathcal{C}(P,\pi) := \{\sigma_{P,\pi}(x) \mid x \in \pi(P)\}$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of Pand π is the projection $(x, y) \mapsto x$.

14/12/2022 22/45

< (F) >

Common Refinement of Normal Fans

We can quantize *c* on each chamber.

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all
$$x \in \operatorname{ri}(\sigma)$$
, For all $x' \in \operatorname{ri}(\tau)$,
 $V(x) = \sum_{N \in \mathcal{N}_{\sigma}} p_N \min_{y \in P_x} \check{c}_N^\top y$ $V(x') = \sum_{N \in \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^\top y$

We take the *common refinement*:

$$\mathcal{R} := \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau} = \{ \mathcal{N} \cap \mathcal{N}' \mid \mathcal{N} \in \mathcal{N}_{\sigma}, \mathcal{N}' \in \mathcal{N}_{\tau} \}$$

For all $x \in ri(\sigma) \cup ri(\tau)$,

$$V(x) = \sum_{N \in \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^{\top} y$$

Maël Forcier

< 67 →

Common Refinement of Normal Fans

We can quantize \boldsymbol{c} on each chamber.

For all
$$x \in \operatorname{ri}(\sigma)$$
, For all $x' \in \operatorname{ri}(\tau)$,
 $V(x) = \sum_{N \in \mathcal{N}_{\sigma}} p_N \min_{y \in P_x} \check{c}_N^\top y$ $V(x') = \sum_{N \in \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^\top y$

We take the *common refinement*:

$$\mathcal{R} := \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau} = \{ \textit{N} \cap \textit{N}' \mid \textit{N} \in \mathcal{N}_{\sigma}, \textit{N}' \in \mathcal{N}_{\tau} \}$$

For all $x \in ri(\sigma) \cup ri(\tau)$,

$$V(x) = \sum_{N \in \mathcal{R}} p_N \min_{y \in P_x} \check{c}_N^\top y$$

Maël Forcier

< 67 →

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at $ri(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at $ri(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Theorem (FGL21, Uniform and universal quantization of the cost)
Let
$$\mathcal{R} = \bigwedge_{\sigma \in \mathcal{C}(P,\pi)} -\mathcal{N}_{\sigma}$$
, then for all $x \in \mathbb{R}^{n}$
 $V(x) = \sum_{R \in \mathcal{R}} \check{p}_{R} \min_{y \in P_{x}} \check{c}_{R}^{\top} y$
where $\check{p}_{R} := \mathbb{P}[\mathbf{c} \in ri(R)]$ and $\check{c}_{R} := \mathbb{E}[\mathbf{c} | \mathbf{c} \in ri(R)]$

Polyhedral characterization of V

Theorem (FGL 2021)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

< 67 ►

Polyhedral characterization of V

Theorem (FGL 2021)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{E}(b - Bx) = \sup_{\lambda \in E} (b - Bx)^{\top} \lambda$$

Polyhedral characterization of V

Theorem (FGL 2021)

For all distributions of \boldsymbol{c} , V is affine on each cell of $\mathcal{C}(P, \pi)$.

Theorem (FGL 2021)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\boldsymbol{E}}(b - Bx) = \sup_{\lambda \in \boldsymbol{E}} (b - Bx)^{\top} \lambda$$

where $\mathbf{E} := \mathbb{E}[D_{\mathbf{c}}] = \int D_{\mathbf{c}} \mathbb{P}(d\mathbf{c})$ is the weighted fiber polyhedron and $D_{\mathbf{c}} := \{\lambda \mid A^{\top}\lambda + \mathbf{c} = 0\}$ the dual admissible set.

The weighted fiber polyhedron is a Minkowski integral with respect to the distribution $d\mathbb{P}(c)$

 \rightsquigarrow extension of fiber polytope (uniform distribution) of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527-549, 1992.

Maël Forcier

Explicit computation of the example

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^2} & \boldsymbol{c}^\top y \\ \text{s.t. } \|y\|_1 \leqslant 1 \\ y_1 \leqslant x \\ y_2 \leqslant x \end{bmatrix}$$

14/12/2022 26/45

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

$$V_t(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + \boldsymbol{V}_{t+1}(y) \\ \\ \text{s.t.} & (x, y) \in \boldsymbol{P}_t \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

→ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- \land epi(Q_t) appears in the constraint and depends on c_{t+1}, \cdots, c_T !

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

 V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

$$\begin{split} & V_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)} \\ & \mathcal{Q}_t := \left(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1} \right) \wedge \mathcal{F} \big(\mathcal{P}_t \big) \end{split}$$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- \land epi(Q_t) appears in the constraint and depends on c_{t+1}, \cdots, c_T !

$$\begin{split} & V_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)} \\ & \mathcal{Q}_t := \left(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1} \right) \wedge \mathcal{F} \big(\mathcal{P}_t \big) \\ & \mathcal{P}_t := \mathcal{C} \big(\mathcal{Q}_t, \pi_x^{x,y} \big) \end{split}$$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

 $V_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)}$ $\mathcal{Q}_t := (\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}) \land \mathcal{F}(\mathcal{P}_t)$ $\mathcal{P}_t := \mathcal{C}(\mathcal{Q}_t, \pi_x^{x,y})$

[FGL21, Lem. 4.1]: $\mathcal{P}_t \preccurlyeq \mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$ $\blacktriangleright V_t$ affine on $\mathcal{P}_t, \mathcal{N}(P_x)$ constant on \mathcal{P}_t

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$egin{aligned} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big((\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}ig(\mathcal{P}_t(\xi)ig), \pi^{x_{t-1},x_t}_{x_{t-1}}ig) \ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \mathsf{supp}} \mathcal{P}_{t,\xi} \end{aligned}$$

< 67 →

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$\mathcal{P}_{t,\xi} := \mathcal{C}\Big((\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}(\mathcal{P}_t(\xi)), \pi_{x_{t-1}}^{x_{t-1}, x_t}\Big)$$
 $\mathcal{P}_t := \bigwedge_{\xi_t \in \mathsf{supp}\, \boldsymbol{\xi}_t} \mathcal{P}_{t,\xi}$

Theorem (FGL 21)

All results generalizes to MSLP with finitely supported stochastic constraints.

- (V_t)_t are affine on universal chamber complexes,
 i.e. independent of the law of (c_t)_t
- ➡ We have an uniform and universal exact quantization.

Contents

1 Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Volume of a polytope

$$\mathsf{Vol}\left(\{z \in \mathbb{R}^d \,|\, Az \leqslant b\}\right) \text{ or } \\ \mathsf{Vol}\left(\mathsf{Conv}(v_1, \cdots, v_n)\right)$$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension d: Lawrence (1991)

< 67 →

Volume of a polytope

2-stage linear problem

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$$
 or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^n} c_1^\top x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c_2^\top y \\ \text{s.t. } A_2 y + B_2 x \leq b_2 \end{bmatrix}$$

s.t. $A_1 x \leq b_1$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m?

Volume of a polytope

2-stage linear problem

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$$
 or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^n} c_1^\top x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c_2^\top y \\ \text{s.t. } A_2 y + B_2 x \leq b_2 \end{bmatrix}$$

s.t. $A_1 x \leq b_1$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

< 67 →

Volume of a polytope

2-stage linear problem

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$$
 or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^n} c_1^\top x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c_2^\top y \\ \text{s.t. } A_2 y + B_2 x \leq b_2 \end{bmatrix}$$

s.t. $A_1 x \leq b_1$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)
 - \rightsquigarrow Exact case
 - \rightsquigarrow Approximated case

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹

Assume that **c** admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2 , \cdots , n_T , are fixed.¹

Assume that **c** admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

► Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\boldsymbol{c}|\boldsymbol{c} \in C, (\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$ and $\mathbb{P}[\boldsymbol{c} \in C|(\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$.

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2 , \cdots , n_T , are fixed.¹

Assume that **c** admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

► Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\mathbf{c}|\mathbf{c} \in C, (\mathbf{A}_t, \mathbf{B}_t, \mathbf{b}_t) = (A, B, b)]$ and $\mathbb{P}[\mathbf{c} \in C|(\mathbf{A}_t, \mathbf{B}_t, \mathbf{b}_t) = (A, B, b)]$.

Proof based on ellipsoid (Gröstchel, Lovász, Schrijver) and upper bound theorems (McMullen, Stanley)

²Or asserts that MSLP is unfeasible.

¹No requirement for the first decision.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2 , \cdots , n_T , are fixed.¹

Assume that **c** admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

► Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\mathbf{c}|\mathbf{c} \in C, (\mathbf{A}_t, \mathbf{B}_t, \mathbf{b}_t) = (A, B, b)]$ and $\mathbb{P}[\mathbf{c} \in C|(\mathbf{A}_t, \mathbf{B}_t, \mathbf{b}_t) = (A, B, b)]$.

Proof based on ellipsoid (Gröstchel, Lovász, Schrijver) and upper bound theorems (McMullen, Stanley)

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1 - \alpha$, when T, n_1, \dots, n_T are fixed.

²Or asserts that MSLP is unfeasible.

¹No requirement for the first decision.

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results

3 Trajectory Following Dynamic Programming

4 Conclusion and perspectives

Local exact quantization for constraints ?

Back to the 2-stage problem

	Α	(B , b)	С
Local	×	?	\checkmark
Uniform	×	×	\checkmark

Duality result

$$V(x) = \mathbb{E}\left[V(x,\xi)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^n} & c^\top y\\ s.t. & Ay + \mathbf{B}x \leq \mathbf{b}\end{bmatrix} = \mathbb{E}\begin{bmatrix}\max_{\lambda \in \mathbb{R}^\ell} & (\mathbf{B}x - \mathbf{b})^\top \lambda\\ s.t. & A^\top \lambda + c = 0\end{bmatrix}$$

➡ Back to the case with random cost

 \wedge The new cost depends on x: only local exact quantization.

Local exact quantization for constraints ?

Back to the 2-stage problem

	Α	(B , b)	С
Local	×	?	\checkmark
Uniform	×	×	\checkmark

Duality result

$$V(x) = \mathbb{E}\left[V(x,\xi)\right] = \mathbb{E}\begin{bmatrix}\min_{y\in\mathbb{R}^n} & c^{\top}y\\ \text{s.t.} & Ay + Bx \leq b\end{bmatrix} = \mathbb{E}\begin{bmatrix}\max_{\lambda\in\mathbb{R}^{\ell}} & (Bx-b)^{\top}\lambda\\ \text{s.t.} & A^{\top}\lambda + c = 0\end{bmatrix}$$

➡ Back to the case with random cost

 \wedge The new cost depends on x: only local exact quantization.

Local exact quantization for constraints ?

Back to the 2-stage problem

	Α	(B , b)	С
Local	×	?	\checkmark
Uniform	×	×	\checkmark

Duality result

$$V(x) = \mathbb{E}\left[V(x,\xi)\right] = \mathbb{E}\begin{bmatrix}\min_{y\in\mathbb{R}^n} & c^{\top}y\\ s.t. & Ay + Bx \leq b\end{bmatrix} = \mathbb{E}\begin{bmatrix}\max_{\lambda\in\mathbb{R}^{\ell}} & (Bx-b)^{\top}\lambda\\ s.t. & A^{\top}\lambda + c = 0\end{bmatrix}$$

< 67 →
Local exact quantization for constraints?

Back to the 2-stage problem

	Α	(B , b)	С
Local	×	?	\checkmark
Uniform	×	×	\checkmark

Duality result

$$V(x) = \mathbb{E}\left[V(x,\xi)\right] = \mathbb{E}\begin{bmatrix}\min_{y\in\mathbb{R}^n} & c^{\top}y\\ s.t. & Ay + Bx \leq b\end{bmatrix} = \mathbb{E}\begin{bmatrix}\max_{\lambda\in\mathbb{R}^{\ell}} & (Bx - b)^{\top}\lambda\\ s.t. & A^{\top}\lambda + c = 0\end{bmatrix}$$

Back to the case with random cost

The new cost depends on x: only local exact quantization.

Local exact quantization for constraints

Random cost

Recall that for a fixed x,

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

Random constraints Similarly, for a given *c* and *x*,

$$\begin{split} \ell(x) &= \mathbb{E} \Big[\max_{\lambda \in D_c} (\boldsymbol{b} - \boldsymbol{B} x)^\top \lambda \Big] \\ &= \sum_{N \in \mathcal{N}(D_c)} p_{N,x} \max_{\lambda \in D_c} \psi_{N,x}^\top \lambda \end{split}$$

where,

$$p_{N} := \mathbb{P} \big[\boldsymbol{c} \in -\operatorname{ri} \boldsymbol{N} \big]$$
$$\check{c}_{N} := \mathbb{E} \big[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} \boldsymbol{N} \big]$$
$$\boldsymbol{P}_{\mathsf{x}} := \{ y \in \mathbb{R}^{m} \mid Ay + Bx \leqslant b \}$$

where,

$$p_{N,x} := \mathbb{P}[\boldsymbol{b} - \boldsymbol{B}x \in \operatorname{ri} N]$$

$$\psi_{N,x} := \mathbb{E}[\boldsymbol{b} - \boldsymbol{B}x \mid \boldsymbol{b} - \boldsymbol{B}x \in \operatorname{ri} N]$$

$$\boldsymbol{D_c} := \{\lambda \in \mathbb{R}^{I} \mid A^{\mathsf{T}}\lambda + c = 0\}$$

< 67 →

Local exact quantization for constraints

Random cost

Recall that for a fixed x,

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

Random constraints

Similarly, for a given c and x,

$$V(x) = \mathbb{E} \Big[\max_{\lambda \in \mathcal{D}_{c}} (\boldsymbol{b} - \boldsymbol{B}x)^{\top} \lambda \Big]$$
$$= \sum_{N \in \mathcal{N}(D_{c})} p_{N,x} \max_{\lambda \in \mathcal{D}_{c}} \psi_{N,x}^{\top} \lambda$$

where,

$$p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$

$$\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$$

$$\boldsymbol{P}_{\mathsf{x}} := \{ y \in \mathbb{R}^m \mid Ay + Bx \leqslant b \}$$

where,

$$p_{N,\times} := \mathbb{P}[\boldsymbol{b} - \boldsymbol{B}x \in \operatorname{ri} N]$$

$$\psi_{N,\times} := \mathbb{E}[\boldsymbol{b} - \boldsymbol{B}x \mid \boldsymbol{b} - \boldsymbol{B}x \in \operatorname{ri} N]$$

$$\boldsymbol{D}_{\boldsymbol{c}} := \{\lambda \in \mathbb{R}^{I} \mid A^{\top}\lambda + \boldsymbol{c} = 0\}$$

< 67 →

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage a Adapted partitions

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Partitioned cost-to-go functions (recalls)

Partitioned cost-to-go functions (recalls)

Adapted partition

Definition

A partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\big[\hat{V}(x_0, \boldsymbol{\xi})\big]$$

¹Can be extended to generic random \boldsymbol{c} and finitely supported \boldsymbol{A}

< 67 →

Adapted partition

Definition

A partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\big[\hat{V}(x_0, \boldsymbol{\xi})\big]$$

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{\xi \in \Xi \mid b - Bx \in \mathsf{ri} N\}$$

Theorem (FL 2021)

 $\mathcal{R}_{x} := \{ E_{N,x} \mid N \in \mathcal{N}(D_{q}) \} \text{ is adapted to } x \text{ i.e. } V_{\mathcal{R}_{x}}(x) = V(x) \\ \text{In particular: if only } \mathbf{B} \text{ and } \mathbf{b} \text{ are stochastic,} \\ \text{then there exists a universal and local exact quantization}^{1}. \\ \text{Bonus: necessary and sufficient condition for a partition to be adapted}$

¹Can be extended to generic random c and finitely supported A

Maël Forcier

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

General framework for Adaptive Partition-based Methods

 $\begin{aligned} \mathcal{P}^{0} \leftarrow \{\Xi\}; \\ \text{for } k = 1 \cdots \infty \text{ do} \\ & \text{Let } x^{k} \text{ be an optimal solution } \min_{x \in X} c_{1}^{\top} x + V_{\mathcal{P}^{k-1}}(x); \\ & \text{Let } \mathcal{P}_{x^{k}} \text{ a partition adapted to } x^{k}; \\ & \mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}}; \\ \text{end} \end{aligned}$

Algorithm 1: General framework for APM.

 $\min_{x\in X}c_1^{\top}x+V_{\mathcal{P}}(x)$

is equivalent to

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}}} c_1^\top x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] c_2^\top y_P$$
$$Ay_P + \mathbb{E}[\boldsymbol{B}|P] x \leq \mathbb{E}[\boldsymbol{b}|P] \quad , \forall P \in \mathcal{P}$$

General framework for Adaptive Partition-based Methods

 $\begin{array}{l} \mathcal{P}^{0} \leftarrow \{\Xi\} ; \\ \text{for } k = 1 \cdots \infty \text{ do} \\ & \text{Let } x^{k} \text{ be an optimal solution } \min_{x \in X} c_{1}^{\top} x + V_{\mathcal{P}^{k-1}}(x) ; \\ & \text{Let } \mathcal{P}_{x^{k}} \text{ a partition adapted to } x^{k} ; \\ & \mathcal{P}^{k} \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^{k}} ; \end{array}$

end

Algorithm 1: General framework for APM.

$$\min_{x\in X}c_1^\top x+V_{\mathcal{P}}(x)$$

is equivalent to

$$\min_{x \in X, (y_{P})_{P \in \mathcal{P}}} \quad c_{1}^{\top} x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] c_{2}^{\top} y_{P}$$
$$A y_{P} + \mathbb{E}[\boldsymbol{B}|P] x \leqslant \mathbb{E}[\boldsymbol{b}|P] \qquad , \forall P \in \mathcal{P}$$

A (partial) comparison between partition based results

Paper	Song, Luedtke	Ramirez-Pico,	FL
	(2015)	Moreno (2020)	(2021)
Non-finite supp (ξ)	×	\checkmark	\checkmark
Explicit oracle	\checkmark	×	\checkmark
Proof of convergence	\checkmark	×	\checkmark
Complexity result	×	×	\checkmark
Fast iteration	\checkmark	×	×

< 67 →

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

If $X \cap \text{dom}(V) \subset \mathbb{R}^+$ is contained in a ball of diameter $M \in \mathbb{R}^+$ and $x \to c_1^\top x + V(x)$ is Lipschitz with constant L then the partition based method finds an ε -solution in at most $\left(\frac{LM}{\varepsilon} + 1\right)^n$ iterations.

Numerical Results - ProdMix

k	x _k	z_L^k	z_U^k	Gap	$ \mathcal{P}_k^{max} $
1	(1333.33, 66.67)	-18666.67	-16939.71	9.3%	4
2	(1441.41, 59.57)	-17873.01	-17383.73	2.7%	9
3	(1399.05, 57.91)	-17789.88	-17659.19	0.74%	16
4	(1379.98, 56.64)	-17744.67	-17708.00	0.20%	25
5	(1371.36, 55.71)	-17718.96	-17709.05	0.056%	36
6	(1375.55, 56.21)	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10 000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711, with radius 2.2.

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

2 Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results

3 Trajectory Following Dynamic Programming

4 Conclusion and perspectives

History of stochastic dual dynamic programming (SDDP)

- Designed by Pereira and Pinto in 1991, used to manage brazilian hydroelectricity network
- Proof of asymptotic convergence in the linear case (Philpott and Guan 2008) and in the convex case (Girardeau, Leclère, Philpott 2015)
- Complexity proof (Lan 2020, Zhang and Sun 2022)
- Plenty of variants: trajectory following dynamic programming algorithms
- All with finitely supported distribution

 x_2

time

Thanks again Vincent !

Maël Forcier

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

 x_2

time

First forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45
x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

time

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

 x_2 00 0 time

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

First backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

< (F)

second forward pass : computing trajectory

Maël Forcier

PhD Defens

14/12/2022 40 / 45

< /₽ → 0 / 45

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

< (F)

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

time

second forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

second backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

< 67 →

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

< 67 →

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

< 67 →

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

PhD Defens

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

PhD Defens

14/12/2022 40 / 45

third forward pass : computing trajectory

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40/45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

third forward pass : computing trajectory

Maël Forcier

14/12/2022 40 / 45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

third backward pass : refining approximation (adding cuts)

Maël Forcier

14/12/2022 40/45

time

And so on...

Maël Forcier

< 67 →

Contributions on SDDP and its variants

- New framework called Trajectory Following Dynamic Programming (TFDP) encompassing at least 14 variants of SDDP
- Complexity proofs, new for most of those variants
- Do not require finite support assumption
- Allow approximation error
- Adapt to robust and risk averse cases

Some TFDP algorithms

Algorithm's name	Node selection: Choice ξ_t^k	Ft	\underline{V}_t^k	\overline{V}_t^k	Hypothesis	Complexity known
SDDP	Random sampling	Exact	Benders cuts	V_t	Convex	~
EDDP	Explorative	Exact	Benders cuts	Vt	Convex	~
APSDDP	Random sampling	Exact	Adaptive partition	Vt	Linear	×
SDDiP	Random sampling	Exact	Lagrangian or integer cuts	Vt	Mixed Integer Linear	×
MIDAS	Random sampling	Exact	Step cuts	Vt	Monotonic Mixed Integer	×
SLDP	Random sampling	Exact	Reverse norm cuts	Vt	Non-Convex	×
BDZ17	Problem child	Exact	Benders cuts	Epigraph as convex hull	Convex	×
BDZ18	Problem child	Exact	$Benders \times Epigraph$	$Hypograph \times Benders$	Convex-Concave	×
RDDP	Deterministic	Exact	Benders cuts	Epigraph as convex hull	Robust	×
ISDDP	Random sampling	Inexact	Inexact Lagrangian cuts	Vt	Convex	×
TDP	Problem child	Exact	Benders cuts	Min of quadratic	Convex	×
ZS19	Random or Problem	Regularized	Generalized conjugacy cuts	Norm cuts	Mixed Integer Convex	~
NDDP	Random or Problem	Regularized	Benders cuts	Norm cuts	Distributionally Robust	~
DSDDP	Random sampling	Exact	Benders cuts	Fenchel transform	Linear	×

Maël Forcier

14/12/2022 42/45

< @ >

Contents

Universal Exact Quantization for cost

- Local in 2-stage
- Uniform in 2-stage
- Uniform in multistage
- Complexity results

Local and universal exact Quantization for constraints in 2-stage

- Adapted partitions
- Adaptive Partition-based Methods
- Convergence, complexity and numerical results
- 3 Trajectory Following Dynamic Programming

4 Conclusion and perspectives

	Α	(B , b)	с
Local	×	\checkmark	\checkmark
Uniform	×	×	\checkmark

• Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).

- Uniform and universal exact quantization for c in MSLP (Chap.4).
 Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

Maël Forcier

	Α	(B , b)	с
Local	×	\checkmark	\checkmark
Uniform	×	×	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

Maël Forcier

	Α	(B , b)	с
Local	×	\checkmark	\checkmark
Uniform	×	×	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

	Α	(B , b)	с
Local	×	\checkmark	\checkmark
Uniform	×	×	\checkmark

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

Maël Forcier

• Higher order simplex algorithm on the chamber complex for 2SLP,

- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP,
- 2-time scale MSLP, nested fiber polyhedra and convex bodies,
- Reintroduce approximation or sampling,
- Exact quantization for stochastic integer linear problems,
- Understanding the complexity of MSLP.

Thank you for listening ! Any question ?

< 67 →