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Linear Programming

min  c'x
x€R?
st. Ax<b

Example: P = {x € R"| Ax < b}
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Linear Programming

min  c'x
x€R?
st. Ax<b
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

IA,b(X) = @
To ease the notation, we write:
I(A, b) = {0,
P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

lap(x) = {5}
To ease the notation, we write:
I(A, b) = {0,5,
P ={xeR"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

lap(x) ={1,5,6}
To ease the notation, we write:

Z(A, b) = {0,5, 156,

P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

Iap(x) = {6}
To ease the notation, we write:

Z(A, b) = {0,5,156,6,

P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

Iap(x) = {4,6}
To ease the notation, we write:

I(A, b) = {0, 5,156, 6, 46,

P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

lap(x) = {4}
To ease the notation, we write:

Z(A, b) = {0,5,156,6, 46,4,

P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

Iap(x) = {3, 4}
To ease the notation, we write:

Z(A, b) = {0,5,156,6,46,4, 34,

P ={x€R"|Ax < b}
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Active constraints

Definition

We denote by Z(A, b), the collection of sets of active constraints as :
Z(A, b) = {lab(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = bi}

Iap(x) = {3}
To ease the notation, we write:

Z(A, b) = {0,5,156,6,46,4,34,3,

P ={x€R"|Ax < b}
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Active constraints

Definition
We denote by Z(A, b), the collection of sets of active constraints as :

Z(A, b) = {lap(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = b;}

Iap(x) = {2,3}
To ease the notation, we write:

Z(A, b) = {0,5,156,6,46,4,34,3,23,

P={xeR"|Ax < b}
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Active constraints

Definition
We denote by Z(A, b), the collection of sets of active constraints as :

Z(A, b) = {lap(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = b;}

Iap(x) = {2}

To ease the notation, we write:

Z(A,b) = {0,5,156,6,46,4,34,3,23,2, }

P={xeR"|Ax < b}
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Active constraints

Definition
We denote by Z(A, b), the collection of sets of active constraints as :

Z(A, b) = {lap(x) | Ax < b}

with Ia p(x) := {i € [q] | Aix = b;}

Iap(x) = {2,5}
To ease the notation, we write:

Z(A, b) = {0,5,156,6,46,4,34,3,23,2,25}

P={xeR"|Ax < b}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | =
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for /| = {5}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {1,5,6}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {6}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {4,6}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {4}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {3,4}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n —rg(A))
Example for | = {3}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n — rg(A))
Example for | = {2,3}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n — rg(A))
Example for | = {2}
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Faces
Definition
Let | € Z(A, b), we denote by P' the face of P such that:

Pl ={xe P|Ax=b}

We have dim(P') = n — rg(A))
Example for | = {2,5}
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Polyhedra without any vertex ?

Definition (Lineality space)
Lin(C) :={ue C|VteR, Vxe€c, x+tue C}.

Lin ({x | Ax < b}) = Ker(A)
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Bases and Vertices

Let P = {x € R"|Ax < b} with A € RP*" and b € RP.
Definition

A basis B is a subset of [p] such that Ag = (Aj)icB,1<j<n iS invertible.
A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

Vert(P) # () <= A admits at least one basis
<~ rg(A)=n
< Lin(P) = {0}

Under this assumption,
For every | € Z(A, b), we can extract a basis B; and P! = {AEIIbBI}'
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Bases and Vertices
Let P = {x € R"|Ax < b} with A € RP*" and b € RP.

Definition
A basis B is a subset of [p] such that Ag = (Aj)icB,1<j<n iS invertible.
A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

Vert(P) # () <= A admits at least one basis
<~ rg(A)=n
< Lin(P) = {0}

Under this assumption,

For every | € Z(A, b), we can extract a basis B; and P! = {AEIIbBI}'
If ¢ ¢ Lin(P)* =Im(AT), minepc'x = —oc0.

Otherwise, we can write P = Py + Lin(P) with Lin(Py) = {0}:

We make this assumption without loss of generality
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Simplex method

Geometrically: Combinatorially:
follow a path on the polyhedron from pivoting from basis to basis

vertex to vertex

B; = {1,5}
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Simplex method

Geometrically: Combinatorially:
follow a path on the polyhedron from pivoting from basis to basis

vertex to vertex
B; = {1,5}
B, ={1,6}
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Simplex method

Geometrically: Combinatorially:
follow a path on the polyhedron from pivoting from basis to basis

vertex to vertex

B, = {1,5}
B, = {1,6}
Bs = {4,6}
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Simplex method

Geometrically: Combinatorially:
follow a path on the polyhedron from pivoting from basis to basis
vertex to vertex

B; = {1,5}
B, ={1,6}
B; = {4,6}
B, = {3,4}
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x

|
S
X

Bt I _Cl

Ne(y)

P x and Np(x)
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x.
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x.

—C
4

R
Ne(y)

P x and Np(x)

Maél Forcier

2SLP and Polyhedral Geometry



Normal fan N(P)

Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x

4

N
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P x and Np(x)
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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Normal fan N(P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, ¢"(x' — x) < 0} the normal cone of P on x
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I
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Normal fan N (P)
Definition
The normal fan of the polyhedron P is
N(P) :={Np(x)|x € P}

with Np(x) = {c|Vx' € P, c¢"(x' — x) < 0} the normal cone of P on x.

Proposition

v

{ri(N)| N € N(P)} is a partition of supp N'(P) (= R™ if P is bounded).

P and N (P)

Maél Forcier
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Definition (Recession cone)
re(C) ={ue C|VteR,, Vxe€c, x+tue C}. J

Let P = {x| Ax < b}

rc(P) = {u| Au < 0}

< ianER" CTX — c e rC(P)* Cone(AT) S (N(P))
—00 - = =st
s.t. Ax < b "
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

X2
A
I
I

A
1
1
1
1

Cost —c and NV (P)
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

_C2
A

I

‘o
I

Cost —c and NV (P)
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

A
]
I
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Cost —c and NV (P)
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

X2
A
I
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

N(

P)
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

N(

P)
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N (P): partition of cost coherent with the min

For any N € NV(P) and —c — arg min,.p c ' x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.
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N (P): partition of cost coherent with the min

For any N € N/(P) and —c — argmin,p ¢ x is constant for all
—ceri(N).

argmin,cp c ' x is a face of P.

N(

P)
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Correspondences

|F e F(P)\{0}, D]

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

=4 Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2
A —C
1 4
1
=0 S S,

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

Np(x) for xeri(F)
Cone(A,")

leT(Ab),Cl— >

- TINeN(P),c
{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2
4 —C
I 4
/= (5) - -
N
F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2
4 —C
I 4
I
I ={1,5,6} e

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2
4 —C
I 4
I = {6} 1. —a

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X
4 —C
| 4

I = {4,6} N

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar)=n —Xdim(F) = dim(N)
' e

1= {4}

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)
p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2

A —C
I

I =1{3,4}

F
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Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar)=n —Xdim(F) = dim(N)
' e

I = {3}

F

Maél Forcier 2SLP and Polyhedral Geometry



Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)
p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)
X
A

1
| +
1
1

I ={2,3}

F

Maél Forcier

2SLP and Polyhedral Geometry



Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

DN e—— R

{icsupp Z(A,b) | AT €N}

rg(Ar)=n —Xdim(F) = dim(N)
' e

I = {2}

F

Maél Forcier 2SLP and Polyhedral Geometry



Correspondences

|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)

p! Np(x) for xeri(F)
Cone(A,")

[ P — T X

-~ O O O OO OO O OO

{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)
X

A —C
I
| 4

I

I

I ={2,5}

F

Maél Forcier
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Correspondences
|F e F(P)\{0},D)|

Ia,p(x) for xeri(F) argmin, cp ¢ x for ce—ri(N)
=4 Np(x) for xeri(F)

Cone(A,")
leZ(Ab Cl—  TTEINEN(P)C
{icsupp Z(A,b) | AT €N}

rg(Ar) = n—dim(F) = dim(N)

X2
s —e
| :
I(Av b) «
{0,5,156,6, 46,4, R
34,3,23,2, 25} |
N(P)

F(P)

Maél Forcier 2SLP and Polyhedral Geometry October 19th, 2021 11/20



Correspondences

v € Vert(P)
Ia,b(v) argmin,p c " x for ce—ri(N)
P! Np(v)
Cone(A]")
O] e—
{iesupp Z(A,b) | AT eN}
-
4
I(A b) = {
{156,46,34,23,25} V4 Y
N(P)
Vert(P)

Maél Forcier

2SLP and Polyhedral Geometry
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@ Simplex for 2SLP
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2-Stage Stochastic Linear Programming

- T
. yerm 1Y

min- ¢ x+E st Tx+Wy<h (2SLP)

st. Ax<b

where T € RP*" W € RP*™ and h € RP.
We can assume A=0and b =0:
We set
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2-Stage Stochastic Linear Programming

: T
min
: SOl qy
o c x+EB st Tx+Wy<h
Ax <b

where T € RP*" W € RP*™ and h € RP.
We can assume A=0and b =0:
We set
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2-Stage Stochastic Linear Programming

: T
min
g yeﬁm q Yy
i cx+E st Tx+Wy<h
Ax+0y < b

where T € RP*" W € RP*™ and h € RP.
We can assume A=0and b =0:
We set
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2-Stage Stochastic Linear Programming

. T
min
yeRm 4

. T ~ — ~
)[2]'1{',, ¢ x+E st. Tx+Wy<h

where T € RP*" W € RP*™ and h € RP.
We can assume A=0and b =0:
We set

October 19th, 2021
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2-Stage Stochastic Linear Programming

T
min ¢ x+ V(x) (2SLP)

where
min qu

V(x) :=TF [YER"
st. Tx+Wy<h

Maél Forcier 2SLP and Polyhedral Geometry October 19th, 2021 12 /20



Fiber P,

V(x)=E[minq'y]

where P, :={y e R"| Tx+ Wy < h}

We assume supp(q) C — Cone(W ") i.e. V(x) > —oco. Example:

0 1 1 1 Y2
0 1 -1 1 !
0 -1 -1 1
T=10 W=1|-1 1 h=11 - -
-1 1 0 0
-1 0 1 0
1 -1 0 P, for x = 0.8
Maél Forcier 2SLP and Polyhedral Geometry October 19th, 2021
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Fiber P,

V(x) = IE[ miFrJ qu] where P, :={y e R™| Tx+ Wy < h}
YEFx

We assume supp(q) C — Cone(WT) i.e. V(x) > —oco. Example:

ni+ty2<1 (1) y2
y-y <l (2) :
—y1—y2<1 (3)
—yni+y2<1 (4)
yn < x (5) ,
y2 s x (6) P, for x = 0.8
x<15 (7)

Maél Forcier 2SLP and Polyhedral Geometry



Expectation to final sum
|F e F(P)\{0}, 0]

Iw h—1x(y) for yeri(F, rgmin,cp, q"y for ge—ri(N)

Np, (y) for y€ri(F)
Cone(W,")

‘/eI(W,thx), N e N(Py),C

C ‘ -~
{iesupp Z(W,h—Tx) | W, eN}

V(x)=E[minq'y]

= Z Ela" Lge—rin]yn(x) with yn(x) € Nge_nargming’y
NeN(Py) y€Px
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Expectation to final sum
|F e F(P)\{0}, 0]

Iw h—1x(y) for yeri(F, rgmin,cp, q"y for ge—ri(N)

Np, (y) for y€ri(F)
Cone(W,")

‘/eI(W,thx), N e N(Py),C

C ‘ -~
{iesupp Z(W,h—Tx) | W, eN}

V(x)=E[minq"
(x)=E[minq'y]
= Z Elq lge—rin]yn(x) with yn(x) € Nge_nargming'y
NeN(Py) y€Px

= Z Elq" Lqc—rin. (r)]yr  with yr € F
FeF(P)
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Expectation to final sum
|F e F(P)\{0}, 0]

Iw h—1x(y) for yeri(F, rgmin,cp, q"y for ge—ri(N)

Np, (y) for y€ri(F)
Cone(W,")

‘/eI(W,thx), N e N(Py),C

C ‘ -~
{iesupp Z(W,h—Tx) | W, eN}

V(x)=E[minq'y]

= Z Elq lge—rin]yn(x) with yn(x) € Nge_nargming'y

NeN(Py) y€Px
= Z E[qT]lqe—ri NPX(F)}}/F with yr € F

FEF(Py)
- Z E[qT]lqE—riCOne(WlT)])/l(X) with y,(x) € P!
IEZ(W ,h—Tx)
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Expectation to final sum
v € Vert(Py)

I, h—7x(v) argmin, cp q 'y for ge— ri(N)

Cone(W,")
I A ) — T X
{i€supp Z(W,h—Tx) | W;" €N}

If q has a density,
V(x) =E[minq"
(x)=E[minq'y]

= Z E[qT]lqe_N]yN(x) with yn(x) € Nge_nargming'y

NEN(Py) yeP.
= Y Ela"lgen. ]

veVert(Py)
= Z ]E[qT]lq€7C0ne(WlT)]y/(X) with y/(X) € 'D>I(
I1€Z(W,h—Tx)
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Expectation to final sum

I, h—7x(v)

I € (W, h— Tx)

If q has a density,
V(x) = [ m|n 1q Tyl

= Z Efa’

NeN(Py)

v € Vert(Py)

Cone(W,")

_— T

-
{i€supp Z(W,h—Tx) | W;" €N}

Lge—n]yn(x)  with yn(x) € Nge—n arg min q'y

= Y Ela"len. n]v

veVert(Py)

= Z E [qT]lqef Cone(W/T)] WB_,l(hBl -

1€T(W,h—Tx)

Maél Forcier 2SLP and Polyhedral Geometry

argmin, cp q"y for ge—ri(N)

yePx

Tpg,x) with basis B; C |

October 19th, 2021
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.4, Z(W,h— Tx)={53,36,65}

Y2

A

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

For x = —0.3, Z(W,h— Tx) = {53,36,65}

Y2

A

6
’/T—V" —q1 y +-----

N(P,)

+y2

P and P,
P, and \N(P,) an
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.2, Z(W,h— Tx)={53,36,65}

Y2

A

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.1, Z(W,h— Tx) = {53,36,65}

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x =0, Z(W,h— Tx) = {523,346,65}

Y2
4
¥ :
g !
" 4 6!
w® w® Y1
- - - —q]_ - - == >
: LN 5
3 A
2
N(Py)
P and P,
P, and \N(P,) an

Maél Forcier
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = 0.1, Z(W,h— Tx) = {52,23,34,46,65}

Y2

4

P and P,
P, and N(P,) an
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = 0.2, Z(W,h— Tx) = {52,23,34,46,65}

Y2

A

P and P,
P, and \N(P,) an
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.3, Z(W,h— Tx) = {52,23,34,46,65}

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.4, Z(W,h— Tx) = {52,23,34,46,65}

Y2

A

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.5, Z(W,h— Tx) = {52,23,34, 46,615}

Y2

A

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.6, Z(W,h— Tx) = {52,23,34,46,61,15}

Y2

A

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.7, Z(W,h— Tx) = {52,23,34,46,61,15}

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.8, Z(W,h— Tx) = {52,23,34,46,61,15}

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.9, Z(W,h— Tx) = {52,23,34,46,61,15}

Y2

4

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x=1, Z(W,h— Tx) = {152,23,34,461}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.1, I(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.2, I(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.3, I(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.4, Z(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.4, Z(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.4, Z(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.3, I(W,h— Tx) = {12,23,34,41}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.2, I(W,h— Tx) = {12,23,34,41}

Y2

P and P,

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 1.1, I(W,h— Tx) = {12,23,34,41}

Y2

P and P,

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x=1, Z(W,h— Tx) = {152,23,34,461}

Y2

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.9, Z(W,h— Tx) = {52,23,34,46,61,15}

Y2

4

x:%9\>

P and P,
P, and \N(P,) an
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.8, Z(W,h— Tx) = {52,23,34,46,61,15}

et

P and P,
P, and \N(P,) an
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.7, Z(W,h— Tx) = {52,23,34,46,61,15}

P, and NV (Py)
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.6, Z(W,h— Tx) = {52,23,34,46,61,15}

Y2

A

X:a‘\>

P and P,
P, and \N(P,) an
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.5, Z(W,h— Tx) = {52,23,34, 46,615}

Y2

A

5
SE—

P and P,
P, and \N(P,) an
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N(P,) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y)| Tx+ Wy <h} and P,.:={y| Tx+ Wy < h}

For x = 0.4, Z(W,h— Tx) = {52,23,34,46,65}

Y2

A

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = 0.3, Z(W,h— Tx) = {52,23,34,46,65}

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = 0.2, Z(W,h— Tx) = {52,23,34,46,65}

Y2

A

P and P,
P, and \N(P,) an
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = 0.1, Z(W,h— Tx) = {52,23,34,46,65}

Y2

4

P and P,
P, and N(P,) an
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x =0, Z(W,h— Tx) = {523,346,65}

Y2
4
¥ :
g !
" 4 6!
w® w® Y1
- - - —q]_ - - == >
: LN 5
3 A
2
N(Py)
P and P,
P, and \N(P,) an
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.1, Z(W,h— Tx) = {53,36,65}

Y2

A

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.2, Z(W,h— Tx)={53,36,65}

Y2

A

P and P,

P, and NV (Py)

Maél Forcier 2SLP and Polyhedral Geometry October 19th, 2021

15/20



N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.3, Z(W,h— Tx) = {53,36,65}

Y2
A
y2
—q !
$ |
© | i
- - = : - —q]_ - - 4+ --=-=-- ->
! ./‘ %EE 5
3 :
N(Px)

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.

P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.4, Z(W,h— Tx)={53,36,65}

Y2

A

P and P,

P, and NV (Py)
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N(Py) and Z(W, h — Tx) are piecewise constant with x.
P:={(x,y) | Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

For x = —0.5, Z(W,h— Tx) = {536}

Y2
A
—6 22
A l
1 |
B P -V O ie
S ¥ -
| ’ :5
3
N(Py)

P and P,

P, and NV (Py)
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What are the constant regions of N'(Py), Z(W, h — Tx)?

Lemma

There exists a collection C(P,m) whose
relative interior of cells are the constant
regions of x — N(P.) and

x = IZ(W,h— Tx).

For o € C(P,7) and x,x’ € ri(o),

N(P) =N(Pv) =N,
I(W,h—Tx) =T(W,h—Tx) =1,

—Q —C

Y2
i

K

A A A A
[ [ [ [
I
I
- = > —C1 - - -~ —C1 - = > —C --—><—->—C1
I l l l
| | | |

N, for 0 = [-0.5,0] N, for o =[0,0.5]

N; for o =[0.5,1] N, for o =[1,400)
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Chamber complex

Definition
The chamber complex C(P, ) of P
along 7 is

C(P,m) :={opx(x)|x e€n(P)}
where

opr(x) = N 7(F)

FEF(P)s.t. xem(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

. . . y
Definition
The chamber complex C(P, ) of P ?
along 7 is
C(P,7) := {op(x) | x € n(P)} Px
where
®
opr(x) = N 7(F)
FeF(P)st. xen(F) X
m(P)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

. . . y
Definition
The chamber complex C(P, ) of P ?
along 7 is
C(P,7) := {op.+(x) | x € 7(P)} Px
where
®
opr(x) = N 7(F)
FEF(P)st. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x
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Chamber complex

Definition
The chamber complex C(P, ) of P
along 7 is

C(P,m) :={opx(x)|x e€n(P)}
where

opr(x) = N 7(F)

FEF(P)s.t. xem(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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H-representation of projection of faces
Let / € Z((T, W), h) be a set of indices

3 R™ P!
XGW(PI){:){yE ’ (x.y) €
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H-representation of projection of faces
Let I € Z((T, W), h) be a set of indices

Jy e R™, Tix+ Wy =h

_ — | eI(W,h—Tx)
Vi€ lal\l, Tix+ Wy <h

xen(P) {
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H-representation of projection of faces
Let I € Z((T, W), h) be a set of indices

dy e R™, Tix+ Wy =h

) — | eI(W,h— Tx)
Vjielq\l, Tix+ W,y < hj

xerin(P) — {

Maél Forcier 2SLP and Polyhedral Geometry October 19th, 2021 18 /20



H-representation of projection of faces

Let / € Z((T, W), h) be a set of indices from which we can extract a basis (i.e.
rg(W,") = m) and let B such a basis

dy € R™, Tgx + Wgy = hg

xernm(P') < {Vie\B, Tix+Wy=~h <= I€I(W,h—Tx)
vjielal\l, Tpx+ Wy <h
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H-representation of projection of faces

Let / € Z((T, W), h) be a set of indices from which we can extract a basis (i.e.
rg(W,") = m) and let B such a basis

Jy eR™,  y=Wg'(hg — Tsx)
xerin(P) < (Vie\B, Tix+Wy=Hh;

— | eZ(W,h— Tx)
Vielal\l, Tix+ Wy <h
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H-representation of projection of faces

Let / € Z((T, W), h) be a set of indices from which we can extract a basis (i.e.
rg(W,") = m) and let B such a basis

xerin(P) < (Vie \B, Tix+ W,Wg'(hg— Tpx)=h;

vjielal\l, Tix+W;Wg'(hs — Tgx) < b
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H-representation of projection of faces

Let / € Z((T, W), h) be a set of indices from which we can extract a basis (i.e.
rg(W,") = m) and let B such a basis

xeri(n(P)) &= (VieNB, (vVB)'x=uf < I€Z(W,h—Tx)

vielal\l, (vf)'x<up

J J
where
v = (Ti = WiWg'Tg) "
uf == h — WW;5'hg
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H-representation of chambers
Let 0 € C(P, )

vl eT,,
xe (N r(x(P) <= SVieN\B, (V) x=ul < I(W,h-Tx) =1,
Iz, vjiela\, () x<uf

where

v = (Ti = WiWg ' Tg)'
uf == h — WW;5'hg

with B, basis C | and
G, ={FeF(P)|oCn(F)}
I, :={l € Z((T,W),h)|o c x(P')}

— _ !
We have 0 = Ngeg, (G) = Njez, 7(P")
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H-representation of chambers
Let 0 € C(P, )

vl eZ,,
x €ri(o) = {Vie \B;, (vVP)Tx=ul <= I(W,h—Tx)=1,
vjielgl\l, (v x <o

where

v = (T = WiWg ' Tg) "
uf = h — W;W;3'hg

with By basis C / and
G, ={FeF(P)|ocCn(F)}
I, :={l € Z((T,W),h) |o c x(P')}

— — . i
We have 0 = Ngeg, m(G) = Nz (P')
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Correspondences

GEF(P) minimal s.t.{x}xFCG
GegsD </—\\Fef INOE)

I wy,w(G)  Iw h—1x(F)
P
Cone(W, )

{i€suppZ, | WTEN}

argmin, cp q " x for ge—ri(N)
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Correspondences

GeF(P) minimal s.t.(x,v)€G
Ge g,, v G Vert

p! Iw h—1x(v) argmin, cp q " x for ge— ri(N)
I(T w), h NPX V)
Cone( W,

NeN

Vo {i€suppZ, |WT€N}
A

Y2

T —q2

I A

| 1

| 1 1

----- i Ani?

¥ =
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Correspondences

GeF(P) minimal s.t.(x,v)€G
Ge g,, v G Vert

p! Iw h—1x(v) argmin, cp q " x for ge— ri(N)
I(T w), h NPX V)
Cone(W,")
[ ——

NeN

{icsuppZ, | W,T €N}
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Correspondences
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Correspondences

GeF(P) minimal s.t.(x,v)€G
-
Ge g,, v G Vert

p! Iw h—1x(v) argmin, cp q " x for ge— ri(N)
I(T w), h NPX V)
Cone(W,")
[ ——

NeN

{icsuppZ, | W,T €N}

7, =
{523 346,65} noo" 1
x 0 %54 ----- -> - —> —q]_
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Correspondences

GEF(P) minimal s.t.(x,v)€G
-
G e gg % 6 Vert

p! (V) argmin, cp q " x for ge— ri(N)
ler,wy.n( Npy(v)
Cone(W,
S ——

Iw,h—
A ——T

s {icsuppZ, | W,T €N}

Z:
{52,23,34

% 46,65} = emmmd n >T:. . —q
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Correspondences

GeF(P) minimal s.t.(x,v)€G

/—\
G e gg % 6 Vert
p! Iw h—1x(v) argmin, cp q " x for ge— ri(N)
ler,wy.n( Np(v)
Cone(W,")
I A
T
v {iesuppZ, | W, €N}
A
: *}/2
_ —aq2
T, = ' )

{52,23,34

46,65} NS -——:—>T:>—»—q1
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Correspondences

GeF(P) minimal s.t.(x,v)€G

-—
Ge gg v 6 Vert
G
p! Iw,h—T1x(Vv) argmin, cp q " x for ge— ri(N)
lerwy.n( Np(v)
Cone(W,
v (W e
¥2 {icsuppZ, | W,T €N}
A
on 22 .
T —42
7, = | N

{52,23,34,
46,65} NS -——:—>T:>—»—q1
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Correspondences

GeF(P) minimal s.t.(x,v)€G

Ge gg = v 6 Vert
p! Iw,h—1x(v) argmin, cp. q " x for ge— ri(N)
It w),n(G) Npy(v)
Cone(WT
E<\_/ NER;
Vo {icsuppZ, | W,T €N}
A
: N *}/2
! —aq2

TJ:

{52,23,34,
46,65} o -——:—>T:>—»—q1
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Correspondences

GeF(P) minimal s.t.(x,v)€G

Ge gg = v 6 Vert
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Correspondences

GeF(P) minimal s.t.(x,v)€G
P —
Ge gg v 6 Vert

pl I, h—7x(v) argmin, cp q " x for ge— ri(N)
I, w),n(G) Np,(v)
Cone(WT
[ ——

NeN

{icsuppZ, | W,T €N}
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Maél Forcier 2SLP and Polyhedral Geometry



Correspondences

GeF(P) minimal s.t.(x,v)€G
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Correspondences
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Correspondences

GeF(P) minimal s.t.(x,v)€G
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Simplex for 2SLP
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Simplex for 2S5LP
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Simplex for 2S5LP

7 = {34,35,456}
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Simplex for 2S5LP

7 = {34,235,1456}
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Simplex for 2S5LP

{34,23,25,146, 15}
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Simplex for 2S5LP

{34,23,125, 146}
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Simplex for 2S5LP

T = {34,23,125,14}
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Simplex for 2S5LP

7 = {348, 238,1258, 148}
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Simplex for 2S5LP

T = {348,238, 128, 148}
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Simplex for 2S5LP

T = {3478,2378,1278, 1478}
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