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Multistage stochastic linear programming (MSLP)

min
(xt)t∈[tmax]

E
[ tmax∑
t=1

c>t xt
]

s.t. Ttxt−1 + Wtxt 6 ht ∀t ∈ [tmax]

xt random variable in Rnt ∀t ∈ [tmax]

xt ∈ σ(ck ,Tk ,Wk ,hk)k6t ∀t ∈ [tmax]

x0 ≡ x0 given

where ct ∈ Rnt , Tt ∈ Rqt×nt−1 ,Wt ∈ Rqt×nt and ht ∈ Rqt are given
random variables.
(ct ,Tt ,Wt ,ht)t∈[tmax] is an independent sequence.

We set Vtmax+1 ≡ 0 and:

Vt(xt−1) := E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Ttxt−1 + Wtxt 6 ht
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Is V polyhedral ?

V (x) = E

min
y∈Rm

c>y + R(y)

s.t. Tx + Wy 6 h

 = E
[

min
y∈Rm

(c>y + R(y) + ITx+Wy6h)
]

Question : On which conditions on the random variable c, T, W and h, is
V polyhedral ?
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We can assume R ≡ 0

V (x) = E

min
y∈Rm

c>y + R(y)

s.t. Tx + Wy 6 h



= E


min

y∈Rm, z∈R
c>y + z

s.t. Tx + Wy 6 h

(y , z) ∈ epi(R)


If R is polyhedral, epi(R) := {(y , z) |Ay + b 6 z ,Cy 6 d}

 We may assume R ≡ 0 by setting

ỹ =

(
y
z

)
, c̃ =

(
c
1

)
, T̃ =

(
T
0

)
, W̃ =

W 0
A −1
C 0

, h̃ =

 h
−b
d
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c , T , W , h deterministic ⇒ V polyhedral

For x ∈ Rn,

V (x) = min
y∈Rm

(c>y + ITx+Wy6h)

= min
y∈Rm

(c>y + I(x ,y)∈P)

= min
y∈Rm

Q(x , y)

V is polyhedral because
epi(V ) ⊂ Rn+1 is the projection of
epi(Q) ⊂ Rn+m+1 on Rn+1. y

x

z

P

epi(Q)

epi(V )
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c, T, W, h with finite support ⇒ V polyhedral

Theorem (see e.g. Shapiro, Dentcheva, Ruszczyński)

If c, T, W, h have a finite support, then V is polyhedral

Proof:

V (x) =
N∑

k=1

pkVk(x)

=
N∑

k=1

pk min
y∈Rm

(c>k y + ITkx+Wky6hk )

where pk := P
[
(c,T,W,h) = (ck ,Tk ,Wk , hk)

]
.

Each Vk is polyhedral and pk > 0.

 Question: are these assumptions tight ?
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Counter examples with stochastic constraints

Stochastic left hand
side constraint T

V (x) = E


min
y∈Rm

y

s.t. ux 6 y

1 6 y


= E

[
max(ux , 1)

]
=

{
1 if x 6 1
x
2 + 1

2x if x > 1

Stochastic right hand
side constraint h

V (x) = E


min
y∈Rm

y

s.t. u 6 y

x 6 y


= E

[
max(x ,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]

x if x > 1

where u is uniform on [0, 1].
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Remaining case: only c stochastic

V (x) = E

min
y∈Rm

c>y

s.t. Tx + Wy 6 h

 = E
[

min
y∈Rm

(c>y + ITx+Wy6h)
]

Theorem (FGL 2020)

If T , W and h are deterministic, then for all distributions of c such that V
is well defined, V is polyhedral.

 This extends easily to T, W and h with a finite support.

Let’s dive in !
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Reformulation of V (x) highlighting the role of the fiber Px

For a given x ,

V (x) = E
[

min
y∈Rm

(c>y + ITx+Wy6h)
]

= E
[

min
y∈Px

c>y
]

where
Px := {y ∈ Rm | Tx + Wy 6 h}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1, y1 6 x , y2 6 x}

y1

y2

Px for x = 0.8

y1

y2

Px for x = 0.3
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Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′− y) 6 0} the normal cone of Px on y .

Proposition

If Px is bounded, {ri(N) |N ∈ N (Px)} is a partition of Rm.

−c1

−c2

•

NPx (y) for x = 0.3

• y1

y2

Px y and NPx (y) for x = 0.3
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N (Px): partition of −c coherent with the min
For a given x , we have

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px) and −c → arg miny∈Px
c>y is constant for all

−c ∈ ri(N).

arg miny∈Px
c>y is a face of Px .

−c1

−c2

Cost −c and N (Px) for x = 0.3

y1

y2

•

•

Px for x = 0.3
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Reduction to a finite sum

For a fixed x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
c>1c∈− riN

]
yN(x)

where yN(x) ∈ arg miny∈Px
c>y for any c ∈ ri(N).

−c1

−c2

N (Px) for x = 0.3

y1

y2

Px and N (Px) for x = 0.3
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General cost c is equivalent to discrete cost č for given x
For a fixed x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
c>1c∈− riN

]
yN(x)

=
∑

N∈N (Px )

pN čNyN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

For N ∈ N (Px),

pN := P
[
c ∈ − riN

]
čN := E

[
c|c ∈ − riN

]

−c1

−c2

N (Px)

and pN čN

for x = 0.3

We draw a continuous cost c.

we draw a discrete cost č indexed by
the finite collection N (Px).
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}

x = 0.3

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.3

P and Px

M. Forcier, S. Gaubert, V. Leclère Polyhedral structure of MSLP September 9th, 2020 14 / 27



N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}

x = 0.4

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.4

P and Px

M. Forcier, S. Gaubert, V. Leclère Polyhedral structure of MSLP September 9th, 2020 14 / 27



N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}

x = 0.9

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.9

P and Px

M. Forcier, S. Gaubert, V. Leclère Polyhedral structure of MSLP September 9th, 2020 14 / 27



N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Tx + Wy 6 h} and Px := {y | Tx + Wy 6 h}
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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What are the constant regions of N (Px) ?

Lemma

There exists a collection C(P, π)
called the chamber complex whose
relative interior of cells are the
constant regions of x → N (Px).

For σ ∈ C(P, π) and x , x ′ ∈ ri(σ),
N (Px) = N (Px ′) =: Nσ

x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

−c1

−c2

Nσ for σ = [−0.5, 0]

−c1

−c2

Nσ for σ = [0, 0.5]

−c1

−c2

Nσ for σ = [0.5, 1]

−c1

−c2

Nσ for σ = [1,+∞)
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Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) s.t. x∈π(F )

π(F )

P

π

x

y

Px

• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y)→ x

π(E ) := {x ∈ Rn | ∃y ∈ Rm, (x , y) ∈ E}
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General cost c is equivalent to discrete cost č for all x

Nσ and č

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

čN
>y

For all x ∈ ri(τ),

V (x) =
∑

N∈Nτ

pN min
y∈Px

čN
>y

Nτ and č

Theorem (Quantization of the cost distribution)

Let R =
∧
σ∈C(P,π)−Nσ, then for all x ∈ Rn

V (x) =
∑
R∈R

p̌R min
y∈Rm

č>R y + ITx+Wy6h

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
Bonus: This quantization method works for every distribution of c !
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Exact formula of V (x) for all x

There exists a collection Iσ of active constraints sets such that
Nσ = {Cone(W>

I ) | I ∈ Iσ}.

Theorem

For all I ∈ Iσ, there exists µ(I ) ∈ RI
+ such that

−µ(I )>WI = E
[
1c∈− ri Cone(W>I )c

>]
Let ασ :=

∑
I∈Iσ T

>
I µ(I ) and βσ := −

∑
I∈Iσ h

>
I µ(I ). Then, for all

x ∈ Rn,
V (x) = max

σ∈Cmax(P,π)
(ασ
>x + βσ) + Ix∈π(P)

In particular, V is polyhedral.

Bonus: for all distributions of c, V is affine on each cell of C(P, π).
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Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

 All Vt are polyhedral (easy)

 The regions where (Vt)t is affine do not depend on the (ct)t (harder)

 We have an exact discretization method working for all (ct)t (harder)
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Explicit computation of the example

V (x) = E


min
y∈R2

c>y

s.t. ‖y‖1 6 1

y1 6 x

y2 6 x

 x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

x

V (x)
-0.5 0 0.5 1

θ2e−θ‖c‖1

4 dc

Different distributions of c:

uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖2

2
2γ2

2πγ2 dc
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We can triangulate −N ∩ supp(c)
We need to compute E

[
c1c∈ri(N)

]
= P

[
c ∈ ri(N)

]
E
[
c | c ∈ ri(N)

]
which is

additive.

The shape of −N ∩ supp(c) can be complicated.

 We can triangulate

•

•
•

•

••

•

•

•

••
•

N (Px) ∩ − supp(c)
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Explicit formulas for usual distributions

We can compute explicitly E
[
c1c∈ri(N)

]
= P

[
c ∈ ri(N)

]
E
[
c | c ∈ ri(N)

]
for

classical distributions

Distribution Uniform on polytope Exponential Gaussian

dP(c)
1c∈Q

Vold (Q)
dLAff(Q)(c)

eθ
>c1c∈K
ΦK (θ)

dLAff(K)c
e
− 1

2
c>M−2c

(2π)
m
2 det M

dc

Support Polytope : Q Cone : K Rm

P
[
c ∈ S

] Vold (S)

Vold (Q)

| det(Ray(S))|
ΦK (θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
c | c ∈ S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ( m+1

2
)

Γ( m
2

)
M Centr

(
S ∩ Sm−1

)

These formulas are valid for S full dimensional simplex or simplicial cone.

M. Forcier, S. Gaubert, V. Leclère Polyhedral structure of MSLP September 9th, 2020 22 / 27



Contents

1 Introduction

2 Studying the polyhedral structure of cost-to-go functions
Fixed state x and normal fan
Variable state x and chamber complex
Main theorem

3 Computation and formulas

4 Complexity results

M. Forcier, S. Gaubert, V. Leclère Polyhedral structure of MSLP September 9th, 2020 22 / 27



Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol
(
{z ∈ Rd |Az 6 b}

)
or

Vol
(

Conv(v1, · · · , vn)
) min

x∈Rn
c>0 x + IAx6b

+ E
[

min
y∈Rm

c>y + ITx+Wy6h

]

• ]P-complete: Dyer and Frieze
(1988)

• Polynomial for fixed dimension d :
Barvinok (1994)

• ]P-hard: Hanasusanto, Kuhn and
Wiesemann (2016)

• Polynomial for fixed m ?

for some
usual distributions: FGL (2020)
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Complexity results

We make the following assumption:
] supp(T,W,h) is finite and P

[
c ∈ S

]
and E

[
c | c ∈ S

]
can be computed in

polynomial time for S full dimensional simplex or simplicial fan.

Theorem

min
x∈Rn

c>0 x + IAx6b + E
[

min
y∈Rm

c>y + ITx+Wy6h

]
(2SLP)

When m is fixed, we can solve (2SLP) in polynomial time.

Theorem
For x ∈ Rn

V (x) := E
[

min
y∈Rm

c>y + ITx+Wy6h

]
When n, m and ] supp(T,W,h) are fixed, we can compute the epigraph of V in
polynomial time.
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Complexity result multistage

We can generalize to multistage by fixing several dimensions and the horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that tmax > 3, n2, . . . , ntmax , ]
(

supp(T2,W2,h2)
)
,

· · · ,]
(

supp(Ttmax ,Wtmax ,htmax )
)

are fixed integers

and for all t ∈ [tmax], ct conditionally to {(Tt ,Wt ,ht) = (T ,W , h)} is easily
computable.

Then, we can solve MSLP in polynomial time.
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Conclusion

• Vt are polyhedral

and affine on regions that are independent of the cost distribution;

• MSLP with arbitrary cost distribution can be exactly discretized;

• analytical formulas for some usual distributions;

• fixed-parameter versions of 2SLP and MSLP are polynomial time.

Perspectives

 Deduce a faster algorithm from the algebraic structure

 Extend the complexity analysis to approximation of the problem;

 Extend to integer stochastic problems;

 Distributionnally robust optimization or sensibility analysis.
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Thank you for listening ! Any question ?

• Maël Forcier and Stéphane Gaubert and Vincent Leclère, The Polyhedral
Structure and Complexity of Multistage Stochastic Linear Problem with
General Cost Distribution, EasyChair Preprint no. 4113, 2020.
https://easychair.org/publications/preprint/pFGX.
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