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Multistage stochastic linear programming (MSLP)

trax
min E [ Z c:—xt}
(%t) € tmax] =1
s.t. TtXt_]_ + tht < ht Vt € [tmax]
X¢ random variable in R"™ Vt € [tmax]
Xt € 0'(Ck7 Ti, Wy, hk)kgt Vt € [tmax]

Xg = Xp given

where ¢; € R™, T; € R%*"-1 W, € R%*" and h; € R% are given
random variables.
(ct, Tt, W, ht) et is an independent sequence.
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Multistage stochastic linear programming (MSLP)

min E[Z ctht}

(xt)telfmax]

t=1

st. Texe—1+ Wexe < he YVt € [tmax]
x¢ random variable in R™ Vt € [tmax)
xt € o(Ck, T, Wi, hy )<t Vt € [tmax]

Xg = Xp given
where ¢; € R™, T; € R%*"-1 W, € R%*" and h; € R% are given
random variables.

(ct, Tt, W, ht) et is an independent sequence.

We set Vi ..+1 =0 and:

min ctht + Vit1(xe)
Vi(xe_1) := E | Xe€R™

s.t. Texe—1 + Wexe < hy
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Is V' polyhedral 7

min ¢’y + R(y)
V(x)=E | YR = E[ minm(cTy + R(y) + ]ITX+wy<h)]
st. Tx+Wy <h y€eR
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Is V' polyhedral 7

min ¢’y + R(y)
V(x)=E | YR = E[ minm(cTy + R(y) + ]ITX+wy<h)]
st. Tx+Wy <h y€eR

Question : On which conditions on the random variable ¢, T, W and h, is
V polyhedral ?

- -

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 3/27



We can assume R =0

[min ¢y +R(y)
V(x) =E |Y<R"
st. Tx+Wy < h

[ min c'y+z
yeRM zeR
=E st. Tx+Wy < h

(v,2) € epi(R)
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We can assume R =0

[min ¢y +R(y)
V(x) =E |Y<R"
st. Tx+Wy < h

[ min c'y+z
yeRM zeR
=E st. Tx+Wy < h

(v,2) € epi(R)

If R is polyhedral, epi(R) := {(y,z)|Ay + b< z,Cy < d}
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We can assume R =0

[min ¢'y+ R(y)
V(x) =E |Y<R"
st. Tx+Wy < h

[ min c'y+z
yeR™ zeR

=E st. Tx+Wy < h
(v,2) € epi(R)

If R is polyhedral, epi(R) := {(y,z)|Ay + b< z,Cy < d}

~> We may assume R = 0 by setting
= (e (7= (w4 )= (5
z C 0 d
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c, T, W, h deterministic = V polyhedral

For x € R",

V(x) = min (c'y +Treim, )
yeRm

epi(Q)
- yng]{z{nm (c"y+ Lixy)er)

= i Q0)

V is polyhedral because
epi(V) € R™1 is the projection of
epi(Q) C Rr+m+l gn ROFL
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c, T, W, h with finite support = V polyhedral

Theorem (see e.g. Shapiro, Dentcheva, Ruszczyriski)

If c, T, W, h have a finite support, then V is polyhedral
Proof:

N
V(x) = pVi(x)
k=1

N
LT
= bk min (& y + ITxt Wiy<he)
—1 yeRm

where py :=P[(c, T,W, h) = (cx, Ty, Wi, hi)].
Each Vi is polyhedral and p, > 0.

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 6/27



c, T, W, h with finite support = V polyhedral

Theorem (see e.g. Shapiro, Dentcheva, Ruszczyriski)
If c, T, W, h have a finite support, then V is polyhedral J

Proof:

N
V(x) = pVi(x)
k=1

N
LT
= bk min (& y + ITxt Wiy<he)
—1 yeRm

where py :=P[(c, T,W, h) = (cx, Ty, Wi, hi)].
Each Vi is polyhedral and p, > 0.

~> Question: are these assumptions tight 7
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Counter examples with stochastic constraints

Stochastic left hand

Stochastic right hand
side constraint T

side constraint h

min

min

y€eRm yeERm
V(x) =E st. ux<y V(x)=E st. u<y
1<y x<y

= E[ max(ux, 1)] = E [ max(x, u)]
)1 fx<1 % if x<0
x4 L .fx>1 =2 ifxe[0,1]
X ifx>1
where u is uniform on [0, 1].
M. Forcier, S. Gaubert, V. Leclere | Polyhedral structure of MSLP |
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Remaining case: only c stochastic

minm cTy
V(x)=E [¥<F = E[ mir)n(cTy + HTX+Wy<h)]
st. Tx+ Wy <h yeR
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Remaining case: only c stochastic

minm cTy
V(x)=E [¥<F = E[ mir)n(cTy + HTX+Wy<h)]
st. Tx+ Wy <h yeR

Theorem (FGL 2020)

If T, W and h are deterministic, then for all distributions of ¢ such that V
is well defined, V is polyhedral.
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Remaining case: only c stochastic

minm cTy
V(x)=E [¥<F = IE[ mir)n(cTy + HTX+Wy<h)]
st. Tx+ Wy <h yeR

Theorem (FGL 2020)

If T, W and h are deterministic, then for all distributions of ¢ such that V
is well defined, V is polyhedral.

~ This extends easily to T, W and h with a finite support.
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Remaining case: only c stochastic

minm cTy
V(x)=E [¥<F = IE[ mir)n(cTy + HTX+Wy<h)]
st. Tx+ Wy <h yeR

Theorem (FGL 2020)

If T, W and h are deterministic, then for all distributions of ¢ such that V
is well defined, V is polyhedral.

~ This extends easily to T, W and h with a finite support.

Let's dive in !
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Contents

© Studying the polyhedral structure of cost-to-go functions
@ Fixed state x and normal fan
@ Variable state x and chamber complex
@ Main theorem
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,

V(x)=E [ynélIian(cTy + HTx+Wy<h):| =E [yne]llg cTy]

where
Py :={y e R™| Tx+ Wy < h}
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,

_ LT _ LT
V(x) = E[yme]g)n(c Y+ Inrwy<n)] = E[ymelpnxc y]
where

Py :={y e R™| Tx+ Wy < h}

[llustrative running example:

Pe={y eR"||lyl: <1, yn<x, y2<x}
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,

_ LT _ LT
V(x) = E[yme]gum(c Y+ Inrwy<n)] = E[ymelPrlc y]
where

Py :={y e R™| Tx+ Wy < h}

[llustrative running example:
PX:{yeRm|”yH1<17 YI<X7 }/2<X}

Y2
A

P, for x =10.8
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,

_ LT _ LT
V(x) = E[yme]gum(c Y+ Inrwy<n)] = E[ymelPrlc y]
where

Py :={y e R™| Tx+ Wy < h}

[llustrative running example:
Px::{yeRmH’yngl? }/1<X7 }/2<X}

Y2
A

---> 3

- -1

P, for x =10.8 P, for x =10.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

2
—C2 ?
4 :
e —q - R 4!
Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

Y2
—C2 ?
4 |
-t —C - R
Np (y) for x =10.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

4

-———I—>—> —C1

Np (y) for x =10.3

P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

A
[
-———l———» —a
I
I
I

|

Np (y) for x =10.3

P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

4

N

|

Np (y) for x =10.3

P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

-5

|

Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

-5
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Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition
The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

A
[
I
I

'_';/!\;"’_Cl - ---= )1

-5

Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

-5
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Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

-5

A

i

|

! - - -

-___4:»_>_C1 - )1

l

|

|

Np (y) for x =10.3
P, y and Np (y) for x = 0.3
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Normal fan N(P;)
Definition

The normal fan of the fiber P, is
N(Px) :={Np(y) |y € P«}

with Np,_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.
Proposition

If P is bounded, {ri(N)|N € N(P.)} is a partition of R™.

N(Py) for x =0.3
P, and N(P,) for x =0.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

y2
—a !
4 L
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

y2
4
—Q |
; 7
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

A
1
1
1
1

Cost —c and NV (Py) for x = 0.3

—_—— - _yl

P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

A

I

-
—

—_—— - _yl

Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

y2
4
—Q |
4 | h
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.

Y2
4
—C2 1
f |
1
- — =
S !
1
|
1
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yneulg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of P;.
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—a !
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N (Py): partition of —c coherent with the min

For a given x, we have

V(x) = E[yngllg cTy]

For any N € NV/(P,) and —c — argmin p_c'y is constant for all
—c eri(N).

argmin,cp c'y is a face of Py.

A

1
>T:' —a

1

1

1

N(Py) for x =0.3

P, for x =10.3

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 11/27



Reduction to a finite sum

For a fixed x,

V() =E[minc'y] = Ne%(jp )E [e ecrin]yw(x)

where yn(x) € argmin cp_ ¢y for any c € ri(N).

A
1
1
1
1

N(Py) for x =0.3

P, and N'(P,) for x =0.3
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General cost c is equivalent to discrete cost € for given x
For a fixed x,

V(x) = ]E[yn;ilg c'y|

- Z Elc lee—rin]yn(x) )

A
NEN(Py) ]'
- — S - _Cl

N(Py) for x =0.3

We draw a continuous cost c.
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General cost c is equivalent to discrete cost € for given x

For a fixed x,

V(x) = IE[yn;iFr) c'y|

— Z Elc Leemrin]yn(x)

NeN(Py)

= Z pnEnyn(X)

NeN(Py)

For N € N(Py),

PN ::IF’[C € —ri N]
&y =E[clc e —riN]

N(P,) and pyéy for x = 0.3

Instead of drawing a general c,
we draw a discrete cost ¢ indexed by
the finite collection N (P,).

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 13 /27



General cost c is equivalent to discrete cost € for given x

For a fixed x,

V(x) =E[minc'y]

yePy
= Z E[CT]ICE— ri N]}/N(X)
NeN(Py)
= Z pnEnyn(X)
NeN(Py)
= Z PN rgllg 'y
NeN(Py) yET

For N € N(Py),

PN ::IF’[C € —ri N]
&y =E[clc e —riN]

pnEn for x = 0.3

Instead of drawing a general c,
we draw a discrete cost ¢ indexed by
the finite collection N (P,).
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

x=-0.3

y2

A
Y2
—o !
t |

.__;/T—>—> —C1 B TN
N(Py) P, and NV (Py)

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0

Y2

4

2 :
—Q f
f I

.--;_,_, _C]. 7 __".yl
N(Py) P, and N (P,)

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0.5
2
4
4
N(Py) P, and N(Py) x=05

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x =0.6
Y2
4
4
.--%_» _C]. 7 .yl
N(Py) Py and NV (Py) x=0.6

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x =0.7

A
[
-__%_> _Cl ’
I
I
I

N(Py) Py and NV (Py) x =07

Y1

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x =0.8

A
[
-__%_> _Cl ’
I
I
I

N(P,) P, and N (P,) x=0.8

Y1

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0.9

N(P,) P, and N (P,) X =0.0
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(Py) Py and NV (Py) x=1
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(Px) PX and N(Px) x=1.1
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(Px) PX and N(Px) x=12
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(PX) PX and N(PX) x=13
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(Py) P, and N (P,) Y14
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P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

N(Py) P, and N (P,) 1 ——
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0.9

N(Py) P, and N (P,)
P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x =0.8

A
[
-__%_> _Cl ’
I
I
I

N(Py) P, and N (P,)

Y1

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x =0.7

A
[
-__%_> _Cl ’
I
I
I

N(Py) P, and N (P,)

Y1

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0.6
Y2
4
4
.--%_» _C]. 7 .yl
N(Py) P, and N (P,)

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0.5

A
]
I
I
I
05 1

N(P) P, and N(P,) x—05 e

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

05 1

N(Py) P, and N(P,) x—04 &—

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

0.5

1

N(P,) P, and N (Py) o ——

P and P,
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N(Py) is piecewise constant with x.
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy < h} and P,:={y| Tx+ Wy < h}

x=0

Y2

4

2 :
—Q f
f I

.--;_,_, _C]. 7 __".yl
N(Py) P, and N (P,)

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

P and Py

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 14 /27



N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

Q 05 1

x::aT‘\.\

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

x=-0.3

y2

A

2 :
—o !
$ |

.__;/T—>—> —C1 - TN
N(Py) P, and NV (Py)

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y)| Tx+ Wy <h} and P,:={y| Tx+ Wy < h}

P and Py
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What are the constant regions of N'(P,) ?

Lemma

There exists a collection C(P, )
called the chamber complex whose
relative interior of cells are the
constant regions of x — N(P,).

For o € C(P,w) and x,x" € ri(o),
N(Py) = N(Py) = N,

A A
| |
| |
| |

N, for o = [0,0.5]

N, for o = [~0.5,0]

M. Forcier, S. Gaubert, V. Leclére
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N; for o =[0.5,1] N, for o =[1,400)
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Chamber complex

y
Definition (Billera, Sturmfels 92) b

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x €n(P)}
where

opx(x) = m 7(F)

FeF(P)st. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

o . y
Definition (Billera, Sturmfels 92) ‘ lw
The chamber complex C(P, ) of P ?
along 7 is
C(P,m) :={op(x) | x € 7(P)} Px |
where E |
? I I
opx(x) = m 7(F) ! !
FEF(P)s.t. xen(F) : : X
. on(P)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

S . Y
Definition (Billera, Sturmfels 92)
The chamber complex C(P, ) of P 7
along 7 is
C(P,7) = {op(x) | x € 7(P)} Px
where
®
opx(x) = m 7(F)
FEF(P)st. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

y
Definition (Billera, Sturmfels 92) b

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x €n(P)}
where

opx(x) = m 7(F)

FeF(P)st. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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General cost c is equivalent to discrete cost € for all x

t For all x € ri(o), For all x € ri(7),

V(x) = E pymin &y'y  V(x) = g pymin &y 'y
! NeN, yePx NeN, yePx L
N alnd ¢ 7 " N, and ¢
o
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General cost c is equivalent to discrete cost € for all x
We take the common refinement:

A R:=N, AN, ={NNN|NeN,,N e€N;} $
N ‘, X
Ny AN
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General cost c is equivalent to discrete cost € for all x
We take the common refinement:

4 R:=Ny AN; ={NNN|NeN,, N €N}

- = -

®

Theorem (Quantization of the cost distribution)

Let R = Nyec(p ) —No, then for all x € R”

V(X) = Z I\jR minm c‘f;y +HTx+Wy<h
Rer VR

where pr :=P[c € ri(R)] and & :=E[c|c € ri(R)]
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General cost c is equivalent to discrete cost € for all x
We take the common refinement:

4 R:=Ny AN; ={NNN|NeN,, N €N}

- = -

®

Theorem (Quantization of the cost distribution)

Let R = Nyec(p ) —No, then for all x € R”

V(X) = Z I\jR minm é;y +HTx+Wy<h
Rer VR

where pr :=P[c € ri(R)] and & :=E[c|c € ri(R)]

Bonus: This quantization method works for every distribution of ¢ !
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Contents

© Studying the polyhedral structure of cost-to-go functions

@ Main theorem
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Exact formula of V/(x) for all x

There exists a collection Z, of active constraints sets such that
N, = {Cone(W,") | I € T, }.
Theorem

For all I € I, there exists (1) € R!, such that

_N(I)T W, =E []lce—ri Cone(WT)cT]
Let ag := ) cq, T, u(l) and By := — ez, hy T 1(1). Then, for all
x € R,

V = O'T o ]Ix ™
(x) aecﬂffp,ﬁ)(a X+ Bs) + Leer(p)

In particular, V' is polyhedral.
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Exact formula of V/(x) for all x

There exists a collection Z, of active constraints sets such that
Ny = {Cone(W,") | I € Z,}.
Theorem
For all I € I, there exists (1) € R!, such that

_M(I)T W, =E []lce— ri Cone( WT)CT]
Let ag := ) cq, T, u(l) and By := — ez, hy T 1(1). Then, for all
x € R,

V = O'T o ]Ix ™
(x) aecﬂffp,ﬁ)(a X+ Bs) + Leer(p)

In particular, V' is polyhedral.

Bonus: for all distributions of c, V is affine on each cell of C(P, 7).
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Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

~ All Vi; are polyhedral (easy)

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 19 /27




Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

~ All Vi; are polyhedral (easy)

~~ The regions where (V}); is affine do not depend on the (c;): (harder)

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP September 9th, 2020 19 /27




Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

~ All Vi; are polyhedral (easy)

~~ The regions where (V}); is affine do not depend on the (c;): (harder)
~+ We have an exact discretization method working for all (c;): (harder)
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Explicit computation of the example

Y2
A b4
. T «
min ¢ ;
ye;Rz Y
Vix)=E| St lyli<1
1 <x
Y2 < X

X Different distributions of c:
uniform on norm 1 ball

uniform on norm 2 ball

unifoer on norm oo ball
_llel3

2:
e 27 e
57 0llel
“fdc
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We can triangulate —/N M supp(c)

We need to compute E [cLcein)] = Plc € ri(V)]E[c | € € ri( V)] which is
additive.

The shape of —N N supp(c) can be complicated.

N(P.) N —supp(c)
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We can triangulate —/N M supp(c)

We need to compute E [cLcein)] = Plc € ri(V)]E[c | € € ri( V)] which is
additive.

The shape of —N N supp(c) can be complicated.

~> We can triangulate

N(P.) N —supp(c)
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Explicit formulas for usual distributions

We can compute explicitly E [clcen(ny] = P[c € ri(N)|E[c | € € ri(N)] for
classical distributions

Distribution | Uniform on polytope Exponential Gaussian
1. eGTclc 7%CTM_ZC
dP(c) Ver,(y 9En(@) () o) dEAn0C e T e
Support Polytope : @ Cone : K R™
Vol4(S) [det(Ray(S))] 1 _
]P[C € 5] Voly(Q) ®x(0) 7o Ang (M 15)
reRay(S) -
—r var(H)
E [C | cec 5] % ZvEVert(S) v (ZrERay(S) ﬁ)ie[m] r(%% M Centr (S N Sp—1)

These formulas are valid for S full dimensional simplex or simplicial cone.

M. Forcier, S. Gaubert, V. Leclére Polyhedral structure of MSLP
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol ({z c R? |Az < b}) or m nc(;rx + Tax<o

i
x€ER"
Vol ((Conv(va, -+, va)) +E[ min c'y+ Its+Wy<h]
yeRm

e f#P-complete: Dyer and Frieze e fP-hard: Hanasusanto, Kuhn and
(1988) Wiesemann (2016)
e Polynomial for fixed dimension d: e Polynomial for fixed m ?

Barvinok (1994)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol ({z c R? |Az < b}) or m nc(;rx + Tax<o

i
x€ER"
Vol ((Conv(va, -+, va)) +E[ min c'y+ Its+Wy<h]
yeRm

e f#P-complete: Dyer and Frieze e fP-hard: Hanasusanto, Kuhn and
(1988) Wiesemann (2016)

e Polynomial for fixed dimension d: e Polynomial for fixed m for some
Barvinok (1994) usual distributions: FGL (2020)
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Complexity results

We make the following assumption:

# supp(T, W, h) is finite and P[c € S] and E[c|c € S]can be computed in
polynomial time for S full dimensional simplex or simplicial fan.

Theorem

Tax E Ity 2SLP
min Co X + Tax<y + [yrgﬁg’c y+1Ir +Wy<h] (2SLP)

When m is fixed, we can solve (2SLP) in polynomial time.

Theorem
For x € R"

_ LT
V(x) = ]E[yrg]g)nc ¥ + I wy<n]

When n, m and tsupp(T, W, h) are fixed, we can compute the epigraph of V in
polynomial time.
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Complexity result multistage

We can generalize to multistage by fixing several dimensions and the horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that tmax = 3,2, ..., ny,., §(supp(T2, W2, hy)),
-+ B(supp(T ., W, he,...)) are fixed integers

and for all t € [tmax], €+ conditionally to {(T, W, h;) = (T, W, h)} is easily
computable.

Then, we can solve MSLP in polynomial time.
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Conclusion

e V/; are polyhedral
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Conclusion

V; are polyhedral
and affine on regions that are independent of the cost distribution;
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Conclusion

e V/; are polyhedral
and affine on regions that are independent of the cost distribution;

e MSLP with arbitrary cost distribution can be exactly discretized,;
e analytical formulas for some usual distributions;

o fixed-parameter versions of 2SLP and MSLP are polynomial time.

Perspectives
~» Deduce a faster algorithm from the algebraic structure
~~ Extend the complexity analysis to approximation of the problem;
~> Extend to integer stochastic problems;

~> Distributionnally robust optimization or sensibility analysis.
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Thank you for listening ! Any question ?

e Maél Forcier and Stéphane Gaubert and Vincent Leclere, The Polyhedral
Structure and Complexity of Multistage Stochastic Linear Problem with
General Cost Distribution, EasyChair Preprint no. 4113, 2020.
https://easychair.org/publications/preprint/pFGX.
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