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2 stage stochastic linear programming (2SLP)

min
x∈Rn

+

c>x + E
[
Q(x , ξ)

]
s.t. Ax = b

where ξ = (T ,h) is random whereas q and W are deterministic1

Q(x , ξ) := min
y∈Rm

+

q>y

s.t. Tx + Wy = h

= max
λ∈Rn

(h − Tx)>λ

s.t. W>λ 6 q
We define

X := {x ∈ Rn
+ | Ax = b} D := {λ ∈ Rl |W>λ 6 q}

No direct formula to compute V (x) := E
[
Q(x , ξ)

]
even for fixed x .

 need to discretize ξ

1Can be extended to generic random q, and finitely supported W
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Sample Average Approximation

min
x∈X

c>x + V (x) where V (x) := E
[
Q(x , ξ)

]
(2SLP)

Randomly draw ξ1, · · · , ξN and consider

min
x∈X

c>x + V SAA
N (x) where V SAA

N (x) :=
1

N

N∑
k=1

Q(x , ξk) (2SLPN)

Solve the equivalent finite LP

min
x∈X ,(yk )Nk=1∈(Rm

+)N
c>x +

1

N

N∑
k=1

q>yk (2SLPN)

T kx + Wyk 6 hk ∀k = 1..N

By statistical results, Val(2SLPN)→N→∞ Val(2SLP).
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Partitioning the cost-to-go function

ξ continuous SAA N = 20 Partition

V (x) = E
[
Q
(
x , ξ
)]

V SAA
N (x) =

1

N

N∑
k=1

Q
(
x , ξk

) VP(x)

Definition (Expected-cost-go of partition)

Let P be a P-partition of Ξ, we define

VP(x) :=
∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])
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Property of cost-to-go partition

VP(x) :=
∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])

For all x , Q(x , ·) is convex,
then VP 6 V
For all P, Q

(
·,E
[
ξ|P
])

is polyhedral
thus VP is polyhedral.

VP(x)

V (x)

x

The (2SLPP) problem minx∈X c>x + VP(x) is the equivalent finite LP

min
x∈X ,(yP)P∈P∈(Rm

+)P
c>x +

∑
P∈P

P
[
P
]
q>yP (2SLPP)

E
[
T |P

]
x + WyP 6 E

[
h|P

]
∀P ∈ P
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Adapted partition

Definition

We say that a partition P is adapted to x0 if

VP(x0) = V (x0) := E
[
Q(x0, ξ)

]

VP(x)

V (x)

x
x0
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Refinement

We say that R refines P and we denote R 4 P if

∀R ∈ R, ∃P ∈ P,R ⊂ P

We denote 4P the refinement relation R up to P-negligeable sets. Then,

R 4P P ⇒ VP 6 VR

P R

M. Forcier, V. Leclère GAPM for 2SLP December 1st, 2021 7 / 24



Common Refinement

We define P 4 P ′ the common refinement of P and P ′

P ∧ P ′ = {P ∩ P ′ |P ∈ P,P ′ ∈ P ′}

Since P ∧ P ′ refines P and P ′

max(VP ,VP ′) 6 VP∧P ′

P P ′ P ∧ P ′

M. Forcier, V. Leclère GAPM for 2SLP December 1st, 2021 8 / 24



General framework for APM

Algorithm General framework for APM methods

1: k ← 0, zU0 ← +∞, zL0 ← −∞, P0 ← {Ξ}
2: while zUk − zLk > ε do

3: Solve zLk ← minx∈X c>x+VPk−1(x) and let xk be an optimal solution
i.e. solve a finite (2SLP)

4: Choose a partition Pxk adapted to xk
5: Pk ← Pk−1 ∧ Pxk
6: for P ∈ Pk do
7: Compute P

[
P
]

and E
[
ξ|P
]

8: end for
9: zUk ← min

(
zUk−1, c

>xk + VPk (xk)
)

10: end while
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Finite case - Song and Luedtke

Song and Luedtke APM algorithm apply to 2SLP with finitely supported
random variable.

Lemma

Let P a partition of Ξ. P is adapted at x iff for all set of scenarios P ∈ P,
there exists a common optimal multiplier λP , i.e.

∀P ∈ P, ∃λP ∈ D,∀ξk ∈ P, λP ∈ argmax
λ∈D

(hk − T kx)>λ

Idea

Sample a large number of scenario

without loss of precision

gather the scenarios thanks to this condition
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Ramirez-Pico and Moreno GAPM

Idea : Partition directly Ξ instead of sampling first

Lemma (Ramirez-Pico Moreno)

Let P a partition of Ξ. If there exists an optimal λ(ξ) such that, for all
P ∈ P,

E
[
h|P

]>E[λ(ξ)|P
]

= E
[
h>λ(ξ)|P

]
x>E

[
T |P

]>E[λ(ξ)|P
]

= x>E
[
T>λ(ξ)|P

]
then P is an adapted partition.

Unfortunately, we do not know an explicit algorithm to find a partition
that satisfies this condition.
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Comparison between partition based method

APM GAPM G2APM

Paper Song, Luedtke Ramirez-Pico, F., Leclère
(2015) Moreno (2020) (2021)

Non-finite supp(ξ) × X X
Proof of convergence X × X
Explicit formulation X × X
Complexity result × × X

Fast iteration X × ×

M. Forcier, V. Leclère GAPM for 2SLP December 1st, 2021 12 / 24
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Normal fan N (D)

Definition

The normal fan of the polyhedron D is

N (D) := {ND(λ) |λ ∈ D}

with ND(λ) = {h | ∀λ′ ∈ P, h>(λ′ − λ) 6 0} the normal cone of D on λ.

Proposition

{ri(N) |N ∈ N (D)} is a partition of suppN (D) (= Rm if D is bounded).

h1

h2

•

ND(λ)

• λ1

λ2

D λ and ND(λ)
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N (D): partition of dual cost coherent with the max

For any N ∈ N (D) and h→ argmaxλ∈D h>λ is constant for all h ∈ ri(N).

h1

h2

h and N (D)

λ1

λ2

D

In particular, there exists a common optimal multipler λN for all
h − Tx ∈ riN, i.e. where Q(x , ξ) = (h − Tx)>λN .
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An explicit adapted partition

Consider x ∈ Rn and N ∈ N (D) a normal cone of D. We define

EN,x := {ξ ∈ Ξ | h − Tx ∈ riN}

Recall that for all ξ = (T , h) ∈ EN,x , Q(x , ξ) = (h − Tx)>λN

Then,
E
[
Q(x , ξ)|EN,x

]
= Q(x ,E

[
ξ|EN,x

]
)

Theorem (FL 2021)

Rx :=
{
EN,x | N ∈ N (D)

}
is an adapted partition i.e. VRx (x) = V (x)

 Is it the coarsest one ?
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CNS conditions for a partition to be adapted

Theorem (FL 2021)

Consider x ∈ Rn and P a partition of Ξ. Then, there exists a canonical
cover Rx of Ξ (not necessarily a partition), is such that

P 4P Rx =⇒ VP(x) = V (x)

P 4P Rx ⇐⇒ VP(x) = V (x).

If ξ admits a density, Rx =P Rx .

•
Rx

•
P

•
P ′

••

Rx

EN,x := {ξ ∈ Ξ | h − Tx ∈ ri(N)}
Rx :=

{
EN,x | N ∈ N (D)

} EN,x := {ξ ∈ Ξ | h − Tx ∈ N}
Rx :=

{
EN,x | N ∈ N (D)max}.
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Subgradient of partition function

Recall that if P 4P Rx then

VRx (x) = VP(x) = V (x)

VRx (·) 6 VP(·) 6 V (·)

Lemma

Let x ∈ dom(V ) and P be a refinement of Rx , i.e. P 4 Rx , then

∂VRx (x) ⊂ ∂VP(x) ⊂ ∂V (x)

Furthermore, if x ∈ ri dom(V ),

∂VRx (x) = ∂VP(x) = ∂V (x)
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

x0
x

V (x)

X
x0

x
X

V (x)

VP(x)

Theorem (Convergence and complexity results)

If X ∩ dom(V ) ⊂ R+ is contained in a ball of diameter M ∈ R+ and
x → c>x + V (x) is Lipschitz with constant L
then the partition based method finds an ε-solution in at most

(
LM
ε + 1

)n
iterations.
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Explicit representation of EN,x

Let N := {h̃ |Mh̃ 6 0}
Then

EN,x = {ξ ∈ Ξ | h − Tx ∈ ri(N)}
= {ξ ∈ Ξ |M(h − Tx) < 0}
= {ξ ∈ Ξ |Hxξ < 0}

where Hx = (−x1M · · · − xnM M).

If T ≡ T is deterministic,

Rx = Tx +N (D)

Then, we only need to compute
N (D) once and translate at each
iteration.

h1

h2

N (D)

Rx

Tx
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Explicit formulas for usual distributions

Recall that VP(x) =
∑

P∈P P
[
P
]
Q
(
x ,E

[
ξ|P
])

.

Thus, we need to compute P
[
C
]

and E
[
ξ |C

]
when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional
simplex or simplicial cone, which can be used through triangulation.

Distribution Uniform on polytope Exponential Gaussian

dP(ξ)
1ξ∈Q

Vold (Q)
LAff(Q)(dξ)

eθ
>ξ1ξ∈K
ΦK (θ)

LAff(K)(dξ) e
− 1

2
ξ>M−2ξ

(2π)
m
2 det M

dξ

Support Polytope : Q Cone : K Rm

P
[
S
] Vold (S)

Vold (Q)

| det(Ray(S))|
ΦK (θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
ξ | S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ( m+1

2
)

Γ( m
2

)
M Ctr

(
S ∩ Sm−1

)
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Numerical Results - LandS

Results given by GAPM and G2APM for LandS problem, illustration from
Ramirez-Pico and Moreno
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Numerical Results - ProdMix

k xk zkL zkU Gap |Pmax
k |

1 (1333.33, 66.67) −18666.67 −16939.71 9.3% 4

2 (1441.41, 59.57) −17873.01 −17383.73 2.7% 9

3 (1399.05, 57.91) −17789.88 −17659.19 0.74% 16

4 (1379.98, 56.64) −17744.67 −17708.00 0.20% 25

5 (1371.36, 55.71) −17718.96 −17709.05 0.056% 36

6 (1375.55, 56.21) −17713.74 −17711.37 0.013% 49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100
times, each with 10 000 scenarios randomly drawn, yielding a 95%
confidence interval centered in −17711, with radius 2.2.
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Perspectives

A GAPM iteration is very slow in high dimension

 Compute E
[
ξ|N

]
and P

[
N
]

with approximations and compare
with SAA

The size of the partition can grow quickly

 Find some heuristics for not only refining but merging
which is equivalent to forget cuts for cutting planes method.
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