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Multistage stochastic linear programming (MSLP)

min E[Zc:xt}
(xe)eern L1
s.t. Aixy + Bixs—1 < b, Vt € [T]
x; random variable in R" Vt e [T]
o(x¢) C o(ck, Ak, By, bi)kst vt € [T]

Xo = Xp given

where ¢; € R™, A; € R%*"-1 B, € R9%*™ and b; € R9 are given
random variables.
(ct,At, Bt, bt)sery is an independent sequence.
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Multistage stochastic linear programming (MSLP)

min E Z c:xt}

(x)eerr) L5
s.t. Aixs + Bexz—1 < by Vt e [T]
x; random variable in R™ vVt e [T]
o(xt) C o(ck, Ak, By, bi)ksr vt e [T]

X0 = Xp given
where ¢; € R™, A; € R%*"-1 B, € R9%*™ and b; € R9 are given
random variables.

(ct,At, Bt, bt)seqry is an independent sequence.

We set V31 =0 and:

min ¢/ x; + Vir1(xe)
Vi(xe_1) := E | Xe€R™
s.t. AtXt + BtXt_]_ < bt
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Quantization of a MSLP

The random variable (ct, A¢, B¢, bt).c7] are often replaced by a discrete
distribution on a finite number of scenarios

K min ¢, x: + Vir1(xe)
1 Gt kit t+1\Xt
Vi(xe—1) =~ Vt (xt—1) Z xe€R
k=1 St Apuxe + Braxe—1 < brk

Scenario drawn by Monte Carlo : Sample Average Approximation

Definition

We say that an MSLP admits an exact quantization if there exists a
finitely supported (&;, A;, By, Bt)te[T] that yields the same expected
cost-to-go functions, (V4)¢[]- In particular the MSLP is equivalent to a
problem on a finite scenario tree.
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Exact Quantization = Polyhedral Functions

min cTy

V(x) :=E [YER"
st. Ax+By<b

Theorem (see e.g. Shapiro, Dentcheva, Ruszczyniski)
Ifc, A, B, b have a finite support, then V is polyhedral J
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Exact Quantization = Polyhedral Functions

min cTy
V(x) :=E [YER"

st. Ax+By<b

Theorem (see e.g. Shapiro, Dentcheva, Ruszczyniski)
Ifc, A, B, b have a finite support, then V is polyhedral

Corollary

If there exists an exact quantization, then V is polyhedral
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Counter examples with stochastic constraints

Stochastic left hand Stochastic right hand
side constraint B side constraint b
min min
yeR™ yeR™
V(x)=E | 4. ux <y V(ix)=E | st u<y
I<y X<y
= E [ max(ux, 1)] = E [ max(x, u)]
B 1 if x <1 % if x <0
3+ ifxz1 = {24 ifx e [0,1]
X ifx>1

where u is uniform on [0, 1].
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Counter examples with stochastic constraints

Stochastic left hand Stochastic right hand
side constraint B side constraint b
i, ¥ i
V(x)=E | st ux <y V(x)=E | st u<y
1<y x<y
= E [ max(ux, 1)] = E [ max(x, u)]
B 1 if x <1 % if x <0
4t ifx>1 =2 ifxe(0,1]
X if x>1

where u is uniform on [0, 1].

~> Nevertheless, there exists an exact quantization when the cost c is

stochastic !
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Reformulation of V/(x) highlighting the role of the fiber P,
For a given x,
min cTy
V(x):=F [YER”
st. Ax+ By <b

V(x):IE[miIg c'y] where P.:={yeR™|Ax+ By < b}
yePrx
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,
min cTy
V(x):=F [YER”
st. Ax+ By <b

V(x):IE[mil_g c'y] where P.:={yeR™|Ax+ By < b}
yePrx

[llustrative running example:

Pe={y eR"||yl1 <1, y1 <x, y»<x}
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,
min cTy
V(x):=F [YER”
st. Ax+ By <b

V(x):IE[miIg c'y] where P.:={yeR™|Ax+ By < b}
yePrx

[llustrative running example:
Pe={y eR"||yl1 <1, y1<x, y2<x}

Y2
A

P, for x =0.8
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Reformulation of V/(x) highlighting the role of the fiber P,

For a given x,
min cTy
V(x):=F [YER”
st. Ax+ By <b

V(x):E[miIg c'y] where P.:={yeR™|Ax+ By < b}
yePrx

[llustrative running example:

Pe={y eR"||yl1 <1, y1 <x, y»<x}

Y2 Y2

I\ s

| 1

1

1

- —_——— y].
1 1
P, for x =0.8 P, for x =0.3
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Normal fan N'(Py)

Definition
The normal fan of the fiber P, is
N(Px) :={Np.(¥) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.

y2
—C2 ?
f |
e g e
Np, (y) for x =0.3
Py y and Np_(y) for x = 0.3
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Normal fan N'(Py)
Definition

The normal fan of the fiber P, is

N(Px) == {Np(y) |y € Px}

with Np_(y) = {c|Vy' € Py, c"(y' —y) < 0} the normal cone of Py ony.
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Normal fan N'(Py)
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Normal fan N(P;)
Definition
The normal fan of the fiber P, is

N(Py) :=={Np.(y)y € P}
with Np,(y) = {c|Vy’ € P, c"(y' —y) < 0} the normal cone of Py on Y|
Proposition

If P is bounded, {ri(N)|N € N(P.)} is a partition of R™.

P, and N/(Py) for x =0.3
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N(Py): partition of cost coherent with the min

For a given x, we have

V(x) = E[yn;ilg c'y]

For any N € N(Py) and —c — argmin cp ¢y is constant for all
—c eri(N).

. T .
argmin,cp c'y is a face of P..

Y2
4
—C2 1
A 1 —
! 1
1
|
Cost —c and NV (Py) for x = 0.3
P, for x =10.3
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N(Py): partition of cost coherent with the min

For a given x, we have

V(x) = E[yrgilg c'y]

For any N € N(Py) and —c — argmin cp ¢y is constant for all
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argmin,cp c'y is a face of P..
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Reduction to a finite sum

For a fixed x,

V() =E[minc'y] = Ne%(jp )E (e Lec—rin]yn(x)

where yy(x) € argmin,cp, ¢y for any c € ri(N).

A
1
1
1
1

N(P,) for x =0.3

P, and N/(Py) for x =0.3
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General cost c is equivalent to discrete cost € for given x

For a fixed x,

V(x) =E[minc'y]

YEPx
= Z IE[c—l—]lce—ri N]YN(X) —AC2
NEN(Py) '

N(Py) for x =0.3

We draw a continuous cost c.
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General cost c is equivalent to discrete cost € for given x

For a fixed x,

V(x) = IE[yn;iFr) c'y|

— Z Elc Leemrin]yn(x)

NeN(Py)

= Y pwenyn(x)

NeN(Py)

For N € N'(Py),

PN ::IF’[C € —ri N]
& =E[clc e —riN]

N(P,) and pyéy for x = 0.3

Instead of drawing a general c,
we draw a discrete cost € indexed by
the finite collection N/ (P, ).
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General cost c is equivalent to discrete cost € for given x

For a fixed x,

V(x) =E[minc'y]

YEPx
= Z E[CT]ICE— ri N]}/N(X)
NeN(Py)
= Y pwenyn(x)
NeN(Py)
= Z PN rgllg 'y
NeN(Py) yET

For N € N'(Py),

PN ::IF’[C € —ri N]
& =E[clc e —riN]

pnEn for x = 0.3

Instead of drawing a general c,
we draw a discrete cost ¢ indexed by
the finite collection N/ (P, ).
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P, :={y|Ax+ By <b}

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P, :={y|Ax+ By <b}

x=-0.3
Y2
A
y2
- ‘4
+ |
Ll o AtMr-en
N(P,) P, and N (P,)

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P.:={y|Ax+ By <b}

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P.:={y|Ax+ By <b}

—C
.--};_, —C ____"yl
N(P,) P, and N (P,)

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0

Y2

A

2 :
—c '
% I

.--}»_, —C 4 __".y].
N(Py) P, and N (P,)

P and Py
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.1

P and P,
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.2

---= )

P and P,
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.3

---+= )

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

—C
A
[
I
I
I

N(P) P, and N/(Py) x=05

P and Py
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.6

A
[
-__%_> _Cl ’
I
I
I

N(Px) P, and N(Py) x = 0.6

1

P and P,
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x =0.7

—C
A
[
I
I
I

N(P,) P, and N'(P,) X 07
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x =0.8

—C
A
[
I
I
I

N(P,) P, and NV (Py) x=08

1

P and Py
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.9
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=1

&)1

x=1

P and Py

Maél Forcier MSLP and Polyhedral Geometry July 13th, 2021 11/22



N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=12

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=13

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=1.4

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=1.4

P and Py
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}
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N(Py) is piecewise constant with x.
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=1

&)1

P and Py
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.9

1

x:'O.Q\>
P and P,
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x =0.8

A
[
-__%_> _Cl ’
I
I
I

N(Px) P, and N(P,)

1

P and P,
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x =0.7
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N(Py) is piecewise constant with x.
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

P and Py

Maél Forcier MSLP and Polyhedral Geometry July 13th, 2021 11/22



N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.3
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.2
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N(Py) is piecewise constant with x.
P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0.1
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P,:={y|Ax+ By <b}

x=0
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P.:={y|Ax+ By <b}
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P.:={y|Ax+ By <b}

x=-0.3
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N(Py) is piecewise constant with x.

P:={(x,y) | Ax+ By < b} and P.:={y|Ax+ By <b}

x=-04
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What are the constant regions of N'(P,) ?

Lemma

There exists a collection C(P. )
called the chamber complex whose
relative interior of cells are the
constant regions of x — N(P.).

For o € C(P,w) and x,x" € ri(o),
N(Px) = N(Pyw) = N

A A
| |
| |
| |

N, for o = [0,0.5]

N, for o = [~0.5,0]
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Chamber complex

. y |
Definition (Billera, Sturmfels 92)

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x € m(P)}
where

opr(x) = ﬂ w(F) N

FEF(P)s.t. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

S : y s
Definition (Billera, Sturmfels 92) l
The chamber complex C(P, ) of P 1
along 7 is
C(P,7) == {opr(x) | x € 7(P)} Px |
where : |
[ ] ! |
oral)= () w(F) | .
FEF(P)s.t. xen(F) | |
. ‘l‘ﬂ'(P)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

y
Definition (Billera, Sturmfels 92)
The chamber complex C(P, ) of P 1
along 7 is
C(P,7) = {op~(x) | x € w(P)} Px
where
[ ]
opr(x) = ﬂ w(F)

FEF(P)s.t. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Chamber complex

. y |
Definition (Billera, Sturmfels 92)

The chamber complex C(P, ) of P
along 7 is

C(P,m) :={op~(x) | x € m(P)}
where

opr(x) = ﬂ w(F)

FEF(P)s.t. xen(F)

where F(P) is the set of faces of P
and 7 is the projection (x,y) — x

m(E):={xeR"| 3y eR", (x,y) € E}
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Common Refinement of Normal Fans

We can quantize ¢ on each chamber.

! For all x € ri(o), For all x € ri(7),

V(x) = E pymin &'y V(x) = E pymin &'y
yEPx yePy j
NEN NEN: N and &

N, alnd ¢
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Common Refinement of Normal Fans
We can quantize ¢ on each chamber.

A
[

‘ For all x € ri(o), For all x € ri(7),

| Zp,\/mm Eny V(x) ZpN mlpn ch
N, NeN, NeN;

We take the common refinement:

R:=N, AN, ={NNN|NeN,,N €N;}

.__%_ For all x € ri(o) Uri(7),

| Z pN m|n ch
Na /\NT NeN AN+
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Common Refinement of Normal Fans
We can quantize ¢ on each chamber.

A
[

‘ For all x € ri(o), For all x € ri(7),

| Zp,\/mm Eny V(x) ZpN mlpn ch
N, NeN, NeN;

We take the common refinement:

R:=N,AN; ={NNN|NeN,,N €N;}

.__%_ For all x € ri(e) Uri(7),

| %
| (x) ZP’V mllg Ny
R NeR
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General cost c is equivalent to discrete cost € for all x

Theorem (Quantization of the cost distribution)
Let R = N,ec(px) —No. then for all x € R”
V(x)= ) pgrmin &
(<) = >_ Pr min Zry
RER

where pg :=P[c € ri(R)] and & :=E[c|c € ri(R)]
Moreover, for all distributions of c,
V is affine on each cell of the chamber complex C(P, ).
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General cost c is equivalent to discrete cost € for all x

Theorem (Quantization of the cost distribution)
Let R = N,ec(px) —No. then for all x € R”
V(x)= ) pgrmin &
(<) = >_ Pr min Zry
RER

where pg :=P[c € ri(R)] and & :=E[c|c € ri(R)]
Moreover, for all distributions of c,
V is affine on each cell of the chamber complex C(P, ).

Bonus: This quantization method works for every distribution of ¢ !
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Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

~ The regions where (V}); is affine do not depend on the (c;):

~» We have an exact discretization method working for all (c;)¢

Idea of the proof :
Iterated chamber complexes

Pre = C(R™ x Peyy A F(Pe(€)), me ™)
Py = /\ Pre

§resupp e
Maél Forcier MSLP and Polyhedral Geometry July 13th, 2021 16 /22



Explicit computation of the example

Y2
A n
. T 4
c :
i <l
Vix)=E| st lyli<1
1 <x
Yo < X

X Different distributions of c:
uniform on norm 1 ball
uniform on norm 2 ball
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Explicit formulas for usual distributions

Distribution | Uniform on polytope Exponential Gaussian
dP Leco g ¢ ek gp B EM
(c) Volg(Q) Aff(Q)(C) Tog(6) IFAF(K)C m c
Support Polytope : Q Cone : K R™
Vol,(S det(Ray(S 1
]P’[c c 5] Vold( ) \ eq(> ayo( )] = Ang (Mfls)
ola(Q) KO crays) "
—r; \/§|—(L+1)
]E[C | ce 5] % ZvEVert(S) v (ZrERay(S) ﬁ)ie[m] r(%% M Ctr (S N Sp—1)

These formulas are valid for S full dimensional simplex or simplicial cone.
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol ({z c R? |Az < b}) or m nc(;rx + Tax<o

i
x€ER"
Vol ((Conv(va, -+, va)) +E[ min c'y+ Its+Wy<h]
yeRm

e f#P-complete: e fP-hard: Hanasusanto, Kuhn and
Dyer and Frieze (1988) Wiesemann (2016)
e Polynomial for fixed dimension d: e Polynomial for fixed m ?

Barvinok (1994)
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol ({z c R? |Az < b}) or m nc(;rx + Tax<o

i
x€ER"
Vol ((Conv(va, -+, va)) +E[ min c'y+ Its+Wy<h]
yeRm

e f#P-complete: e fP-hard: Hanasusanto, Kuhn and
Dyer and Frieze (1988) Wiesemann (2016)

e Polynomial for fixed dimension d: e Polynomial for fixed m:
Barvinok (1994) FGL (2020)
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Complexity result multistage

We can generalize to multistage by fixing several dimensions and the horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that T > 3,m,...,nr, §(supp(Az, B2, b2)), -+« #(supp(Ar,B1,b7))
are fixed integers

and for all t € [T], c; conditionally to {(A¢, B:,b:) = (A, B, b)} is easily
computable.

Then, we can solve MSLP in polynomial time.
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Conclusion

e MSLP with arbitrary cost distribution can be exactly discretized;
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Conclusion

e MSLP with arbitrary cost distribution can be exactly discretized;
e new algebraic insights on the polyhedral structure of MSLP;
e analytical formulas for some usual distributions;
o fixed-parameter versions of 2SLP and MSLP are polynomial time.
Perspectives
~ New algorithms from the algebraic structure
~~ Sensibility analysis to the distribution, link with nested distance;
~> Extend to integer stochastic problems;

~> Distributionnally robust optimization.
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Thank you for listening ! Any question ?

e Maél Forcier, Stéphane Gaubert and Vincent Leclere, The Polyhedral
Structure and Complexity of Multistage Stochastic Linear Problem with

General Cost Distribution,
https://hal.archives-ouvertes.fr/hal-02929361.
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