Multistage stochastic optimization and polyhedral geometry

Maël Forcier

Élucubrations scientifiques October 17th 2022

ParisTech

- *u* water hustled
- d demand
- c cost of unmet demand

 $\min_{u} c(d-u)$ s.c. $0 \leq u \leq d$

- u water hustled
- d demand
- c cost of unmet demand
- x_0/x_1 water in the reservoir
- \overline{x} capacity of the reservoir

 $\min_{u} c(d - u)$ s.c. $0 \leq u \leq d$ $x_1 = x_0 - u$ $0 \leq x_0 \leq \overline{x}, \ 0 \leq x_1 \leq \overline{x}$

- u water hustled
- d demand
- c cost of unmet demand
- x_0/x_1 water in the reservoir
- \overline{x} capacity of the reservoir
- w rain and runoff

 $\min_{u} c(d - u)$ s.c. $0 \leq u \leq d$ $x_1 = x_0 - u + w$ $0 \leq x_0 \leq \overline{x}, \ 0 \leq x_1 \leq \overline{x}$

- u water hustled
- d demand
- c cost of unmet demand
- x_0/x_1 water in the reservoir
- \overline{x} capacity of the reservoir
- w rain and runoff
- v water evacuated by the valve

 $\min_{u,v} c(d-u)$ s.c. $0 \leq u \leq d$ $x_1 = x_0 - u + w - v$ $0 \leq x_0 \leq \overline{x}, \ 0 \leq x_1 \leq \overline{x}$ $0 \leq v$

At step t

- u_t water hustled
- *d_t* demand
- c_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff
- v_t water evacuated by the valve

 $\min_{\boldsymbol{u}_{t}, \boldsymbol{v}_{t}} \sum_{t=1}^{T} c_{t} (d_{t} - \boldsymbol{u}_{t})$ $s.c. \forall t \in [T], \ 0 \leq \boldsymbol{u}_{t} \leq d_{t}$ $\forall t \in [T], \ \boldsymbol{x}_{t+1} = \boldsymbol{x}_{t} - \boldsymbol{u}_{t} + \boldsymbol{w}_{t} - \boldsymbol{v}_{t}$ $\forall t \in [T], \ 0 \leq \boldsymbol{x}_{t} \leq \overline{\boldsymbol{x}}$ $\forall t \in [T], \ 0 \leq \boldsymbol{v}_{t}$

$$egin{array}{c} \min_{x\in \mathbb{R}^n} & c^ op x \ ext{s.t.} & ext{Ax} \leqslant b \end{array}$$

$$egin{array}{c} \min_{x\in \mathbb{R}^n} & c^ op x \ ext{s.t.} & Ax \leqslant b \end{array}$$

$$egin{array}{c} \min_{x\in\mathbb{R}^n} & c^ op x \ ext{s.t.} & Ax\leqslant b \end{array}$$

$$egin{array}{c} \min_{x\in\mathbb{R}^n} & c^ op x \ ext{s.t.} & Ax\leqslant b \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ (5) \\ (6) \\ 3 \\ (7) \end{pmatrix} \begin{pmatrix} x_2 \\ + \\ x_1 \\ + \\ x_1 \\ + \\ (7) \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 \\ + \\ x_2 \\ + \\ (7) \end{pmatrix}$$

$$egin{array}{c} \min_{x\in \mathbb{R}^n} & c^ op x \ ext{s.t.} & Ax \leqslant b \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \\ & & \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ & & & \\$$

$$\min_{x\in\mathbb{R}^n} c^ op x$$
s.t. $Ax\leqslant b$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ x_1 \leqslant 0.5 & (5) \\ x_2 \leqslant 0.5 & (6) \\ (7) \end{pmatrix} \begin{pmatrix} x_2 \\ + \\ -x_1 - x_2 \leqslant 1 \\ x_1 \leqslant 0.5 \\ x_2 \leqslant 0.5 & (6) \\ (7) \end{pmatrix}$$

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & c^\top x \\ \text{s.t.} & Ax \leqslant b \end{array}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(x) = \emptyset$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, \}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(x) = \{5\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, 5, \}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{1, 5, 6\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \left\{ \emptyset, 5, 156, \right.$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{\mathbf{6}\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \big\{ \emptyset, 5, 156, 6,$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{4, 6\}$ To ease the notation, we write:

$$\mathcal{I}(A,b) = \big\{ \emptyset, 5, 156, 6, 46,$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{4\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, 5, 156, 6, 46, 4, ...\}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{3,4\}$ To ease the notation, we write:

$$\mathcal{I}(A,b) = ig\{ \emptyset, 5, 156, 6, 46, 4, 34, ig\}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(\mathbf{x}) = \{3\}$ To ease the notation, we write:

$$\mathcal{I}(A,b) = ig (\emptyset, 5, 156, 6, 46, 4, 34, 3,$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(x) = \{2,3\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3, 23, \}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(x) = \{2\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3, 23, 2, ...\}$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with $I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$

 $I_{A,b}(x) = \{2, 5\}$ To ease the notation, we write:

$$\mathcal{I}(A, b) = \left\{ \emptyset, 5, 156, 6, 46, 4, 34, 3, 23, 2, 25
ight\}$$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim $(P^{I}) = n - rg(A_{I})$ Example for $I = \emptyset$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{5\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim $(P') = n - \operatorname{rg}(A_I)$ Example for $I = \{1, 5, 6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{4, 6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{4\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{3, 4\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{3\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{2, 3\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{2\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^{I} the face of P such that:

$$\mathsf{P}^{\mathsf{I}} = \{ x \in \mathsf{P} \, | \, \mathsf{A}_{\mathsf{I}} x = \mathsf{b}_{\mathsf{I}} \}$$

We have dim(P^{I}) = $n - rg(A_{I})$ Example for $I = \{2, 5\}$

Polyhedra without any vertex ?

Definition (Lineality space) Lin(C) := { $u \in C \mid \forall t \in \mathbb{R}, \forall x \in c, x + tu \in C$ }.

$$\mathsf{Lin}\left(\{x \,|\, \mathsf{A} x \leqslant b\}\right) = \mathsf{Ker}(\mathsf{A})$$

Bases and Vertices

Let
$$P = \{x \in \mathbb{R}^n | Ax \leq b\}$$
 with $A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^p$.

Definition

A basis B is a subset of [p] such that $A_B = (A_{i,j})_{i \in B, 1 \leq j \leq n}$ is invertible. A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

$$Vert(P) \neq \emptyset \iff A$$
 admits at least one basis
 $\iff rg(A) = n$
 $\iff Lin(P) = \{0\}$

Under this assumption, For every $I \in \mathcal{I}(A, b)^{\max}$, we can extract a basis B_I and $P^I = \{A_{B_I}^{-1}b_{B_I}\}$. If $c \notin \text{Lin}(P)^{\perp} = \text{Im}(A^{\top})$, $\min_{x \in P} c^{\top}x = -\infty$. Otherwise, we can write $P = P_0 + \text{Lin}(P)$ with $\text{Lin}(P_0) = \{0\}$: We make this assumption without loss of generality

Bases and Vertices

Let
$$P = \{x \in \mathbb{R}^n | Ax \leq b\}$$
 with $A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^p$.

Definition

A basis B is a subset of [p] such that $A_B = (A_{i,j})_{i \in B, 1 \leq j \leq n}$ is invertible. A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

$$Vert(P) \neq \emptyset \iff A \text{ admits at least one basis}$$
$$\iff rg(A) = n$$
$$\iff Lin(P) = \{0\}$$

Under this assumption, For every $I \in \mathcal{I}(A, b)^{\max}$, we can extract a basis B_I and $P^I = \{A_{B_I}^{-1}b_{B_I}\}$. If $c \notin \operatorname{Lin}(P)^{\perp} = \operatorname{Im}(A^{\top})$, $\min_{x \in P} c^{\top}x = -\infty$. Otherwise, we can write $P = P_0 + \operatorname{Lin}(P)$ with $\operatorname{Lin}(P_0) = \{0\}$: We make this assumption without loss of generality

Geometrically: Combinatorially: follow a path on the polyhedron from pivoting from basis to basis vertex to vertex

$$B_1 = \{1, 5\}$$

Geometrically: Combinatorially: follow a path on the polyhedron from pivoting from basis to basis vertex to vertex

$$B_1 = \{1, 5\}$$

 $B_2 = \{1, 6\}$

Geometrically: Combinatorially: follow a path on the polyhedron from pivoting from basis to basis vertex to vertex

 $B_1 = \{1, 5\}$ $B_2 = \{1, 6\}$ $B_3 = \{4, 6\}$

Geometrically: Combinatorially: follow a path on the polyhedron from pivoting from basis to basis vertex to vertex

 $B_1 = \{1, 5\}$ $B_2 = \{1, 6\}$ $B_3 = \{4, 6\}$ $B_2 = \{3, 4\}$

Modeling hydroelectric energy storage management

At step t

- u_t water hustled
- *d_t* demand
- c_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff
- v_t water evacuated by the valve

 $\min_{\boldsymbol{u}_t, \boldsymbol{v}_t} \quad \sum_{t=1}^T c_t (d_t - \boldsymbol{u}_t)$ $s.c. \ \forall t \in [T], \ 0 \leq \boldsymbol{u}_t \leq d_t$ $\forall t \in [T], \ \boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \boldsymbol{u}_t + \boldsymbol{w}_t - \boldsymbol{v}_t$ $\forall t \in [T], \ 0 \leq \boldsymbol{x}_t \leq \overline{\boldsymbol{x}}$ $\forall t \in [T], \ 0 \leq \boldsymbol{v}_t$

Modeling hydroelectric energy storage management

At step t

- **u**_t water hustled
- **d**_t demand
- **c**_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff
- **v**_t water evacuated by the valve

 $\min_{\boldsymbol{u}_t, \boldsymbol{v}_t} \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t (\boldsymbol{d}_t - \boldsymbol{u}_t) \Big]$ s.c. $\forall t \in [T], \ 0 \leq \boldsymbol{u}_t \leq \boldsymbol{d}_t$ $\forall t \in [T], \ \boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \boldsymbol{u}_t + \boldsymbol{w}_t - \boldsymbol{v}_t$ $\forall t \in [T], \ 0 \leq \boldsymbol{x}_t \leq \overline{\boldsymbol{x}}$ $\forall t \in [T], \ 0 \leq \boldsymbol{v}_t$

Modeling hydroelectric energy storage management

At step t

- **u**_t water hustled
- **d**_t demand
- **c**_t cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff
- \boldsymbol{v}_t water evacuated by the value

$$\min_{\boldsymbol{u}_{t},\boldsymbol{v}_{t}} \mathbb{E} \Big[\sum_{t=1}^{\prime} \boldsymbol{c}_{t} (\boldsymbol{d}_{t} - \boldsymbol{u}_{t}) \Big]$$

s.c. $\forall t \in [T], \ 0 \leq \boldsymbol{u}_{t} \leq \boldsymbol{d}_{t}$
 $\forall t \in [T], \ \boldsymbol{x}_{t+1} = \boldsymbol{x}_{t} - \boldsymbol{u}_{t} + \boldsymbol{w}_{t} - \boldsymbol{v}_{t}$
 $\forall t \in [T], \ 0 \leq \boldsymbol{x}_{t} \leq \overline{\boldsymbol{x}}$
 $\forall t \in [T], \ 0 \leq \boldsymbol{v}_{t}$
 $\forall t \in [T], \ \sigma(\boldsymbol{u}_{t}, \boldsymbol{v}_{t}) \subset \sigma(\boldsymbol{d}_{\tau}, \boldsymbol{w}_{\tau})_{\tau \leq t}$

т

Multistage stochastic linear programming (MSLP)

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_{\tau}, \boldsymbol{A}_{\tau}, \boldsymbol{B}_{\tau}, \boldsymbol{b}_{\tau})_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. We set $V_{T+1} \equiv 0$ and:

$$V_t(x_{t-1}) := \mathbb{E}ig[\hat{V}_t(x_{t-1}, oldsymbol{\xi}_t)ig] := \mathbb{E}igg[egin{array}{ccc} \min_{x_t \in \mathbb{R}^{n_t}} & oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \ ext{s.t.} & oldsymbol{A}_t x_t + oldsymbol{B}_t x_{t-1} \leqslant oldsymbol{b}_t igg] \end{array}$$

How to deal with continuous distributions ?

Maël Forcier

Multistage stochastic linear programming (MSLP)

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^T \boldsymbol{c}_t^\top \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. We set $V_{T+1} \equiv 0$ and:

$$V_t(x_{t-1}) := \mathbb{E}ig[\hat{V}_t(x_{t-1}, oldsymbol{\xi}_t)ig] := \mathbb{E}igg[egin{array}{ccc} \min & oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \ ext{s.t.} & oldsymbol{A}_t x_t + oldsymbol{B}_t x_{t-1} \leqslant oldsymbol{b}_t igg] \end{array}$$

How to deal with continuous distributions ?

Multistage stochastic linear programming (MSLP)

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \quad \mathbb{E} \Big[\sum_{t=1}^T \boldsymbol{c}_t^\top \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv \boldsymbol{x}_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent. We set $V_{T+1} \equiv 0$ and:

$$V_t(x_{t-1}) := \mathbb{E}ig[\hat{V}_t(x_{t-1}, oldsymbol{\xi}_t)ig] := \mathbb{E}igg[egin{array}{ccc} \min_{x_t \in \mathbb{R}^{n_t}} & oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \ ext{s.t.} & oldsymbol{A}_t x_t + oldsymbol{B}_t x_{t-1} \leqslant oldsymbol{b}_t igg] \end{array}$$

How to deal with continuous distributions ?

Maël Forcier

Quantization of a MSLP Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leqslant \boldsymbol{b}_t\end{bmatrix}$$

 ξ_t continuous

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leq \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 $\boldsymbol{\xi}_t$ continuous

 ξ^1, \cdots, ξ^N drawn by Monte Carlo

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leq \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

$$\xi^1, \cdots, \xi^N$$
 drawn by Monte Carlo

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x,\check{\xi}_{t,P})$$

with
$$\check{p}_{t,P} := \mathbb{P}[\boldsymbol{\xi}_t \in P]$$
 and $\check{\xi}_{t,P} := \mathbb{E}[\boldsymbol{\xi}_t \,|\, \boldsymbol{\xi}_t \in P]$

 $\boldsymbol{\xi}_t$ continuous

SAA N = 20

Partition-based

Quantization of a MSLP

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix}\min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y)\\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leq \boldsymbol{b}_t\end{bmatrix}$$

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

$$\xi^1, \cdots, \xi^N$$
 drawn by Monte Carlo

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x,\check{\xi}_{t,P})$$

with
$$\check{p}_{t,P} := \mathbb{P}[\boldsymbol{\xi}_t \in P]$$
 and $\check{\xi}_{t,P} := \mathbb{E}[\boldsymbol{\xi}_t | \boldsymbol{\xi}_t \in P]$
If $\xi \mapsto \hat{V}(x,\xi)$ is convex, $V_{t,\mathcal{P}}(x) \leqslant V_t(x)$.

 $\boldsymbol{\xi}_t$ continuous

SAA N = 20

Partition-based

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $(\xi_t)_{t \in [T]}$ *i.e.* such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \boldsymbol{\xi}_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\boldsymbol{\xi}}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition P_{t,x} such that the induced quantization is exact at time t on x, for all distributions of (ξ_τ)_{τ∈[T]}.

Questions:

Under which condition does there exist an exact quantization ?

② Can we construct a uniform and universal exact quantization ?

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $(\xi_t)_{t \in [T]}$ *i.e.* such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \boldsymbol{\xi}_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\boldsymbol{\xi}}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition P_{t,x} such that the induced quantization is exact at time t on x, for all distributions of (ξ_τ)_{τ∈[T]}.

Questions:

- Under which condition does there exist an exact quantization ?
- ② Can we construct a uniform and universal exact quantization ?

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now. Let $\boldsymbol{A} = (-\boldsymbol{u})$, $\boldsymbol{B} \equiv (0)$, $\boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\underset{y \in \mathbb{R}}{\min} \quad y}{\underset{\text{s.t.}}{\min} \quad y \ge 1} = \frac{1}{u}$$

By strict convexity, for all partition $\mathcal P$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P]$.

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now. Let $\boldsymbol{A} = (-\boldsymbol{u})$, $\boldsymbol{B} \equiv (0)$, $\boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \ge 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in P]$.

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now. Let $\boldsymbol{A} = (-\boldsymbol{u})$, $\boldsymbol{B} \equiv (0)$, $\boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\underset{y \in \mathbb{R}}{\min} \quad y}{\underset{\text{s.t.}}{\min} \quad y} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\Big[\frac{1}{\boldsymbol{u}}\Big]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in P]$.

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now. Let $\boldsymbol{A} = (-\boldsymbol{u})$, $\boldsymbol{B} \equiv (0)$, $\boldsymbol{b} \equiv (-1)$ where $\boldsymbol{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\underset{y \in \mathbb{R}}{\min} \quad y}{\underset{\text{s.t.}}{\min} \quad y \ge 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\boldsymbol{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in P]$.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $Ay + Bx \leq h$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x, y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 $\hat{V}(\cdot,\xi)$ is polyhedral because
epi $(\hat{V}(\cdot,\xi))$ is the projection of
epi (Q^{ξ}) .

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 $\hat{V}(\cdot,\xi)$ is polyhedral because
epi $(\hat{V}(\cdot,\xi))$ is the projection of
epi (Q^{ξ}) .
 $V(x) = \mathbb{E}[\hat{V}(x,\xi)] = \sum_{\xi \in \text{supp}(\xi)} p_{\xi} \hat{V}(x,\xi)$

 \blacktriangleright If the noise is finitely supported, then V is polyhedral

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^\top y$$

s.t. $(x,y) \in P$
 $= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$ epi $(\hat{V}(\cdot,\xi))$
with $Q^{\xi}(x,y) := c^\top y + \mathbb{I}_{(x,y) \in P}$.
 \cdot, ξ) is polyhedral because
 $(\hat{V}(\cdot,\xi))$ is the projection of
 (Q^{ξ}) .

$$\mathcal{P}(x) = \mathbb{E} \left[\hat{\mathcal{V}}(x, \boldsymbol{\xi}) \right] = \sum_{\xi \in \mathsf{supp}(\check{\boldsymbol{\xi}})} p_{\xi} \hat{\mathcal{V}}(x, \xi)$$

- \blacktriangleright If the noise is finitely supported, then V is polyhedral
- Existence of uniform exact quantization implies polyhedrality of V.

Maël Forcier

epi epi

Counter examples with stochastic constraints

Stochastic
$$\boldsymbol{B}$$

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ s.t. & \boldsymbol{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$$

$$= \mathbb{E} \begin{bmatrix} \max(\boldsymbol{u}x, 1) \end{bmatrix}$$

$$= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$$
Stochastic \boldsymbol{b}

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ s.t. & y \geqslant \boldsymbol{u} \\ & x - y \leqslant 0 \end{bmatrix}$$

$$= \mathbb{E} \begin{bmatrix} \max(x, \boldsymbol{u}) \end{bmatrix}$$

$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases}$$

V is not polyhedral ⇒ No uniform exact quantization for non-finitely supported B and b.

 $\boldsymbol{\textit{u}}$ is uniform on [0,1]

Maël Forcier

Counter examples with stochastic constraints

tochastic **B**

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ s.t. & \boldsymbol{u}x - y \leqslant 0 \\ y \geqslant 1 \end{bmatrix}$$

$$= \mathbb{E}[\max(\boldsymbol{u}x, 1)]$$

$$= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$$
Stochastic **b**

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ s.t. & y \geqslant \boldsymbol{u} \\ x - y \leqslant 0 \end{bmatrix}$$

$$= \mathbb{E}[\max(x, \boldsymbol{u})]$$

$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2+1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases}$$

V is not polyhedral ⇒ No uniform exact quantization for non-finitely supported B and b.

 \boldsymbol{u} is uniform on [0,1]

Maël Forcier

S

Remaining cases

	F	- -	I		Α	(B , b)	с
$V(x) = \mathbb{E}$	$\min_{y\in\mathbb{R}^m}$	c ' y	-	Local	×	?	?
	s.t.	$Ay + Bx \leq b$		Uniform	×	×	?

Remaining cases

	F	т т			Α	(B , b)	с
$V(x) = \mathbb{E}$	$\min_{y\in\mathbb{R}^m}$	c ' y	=	Local	×	\checkmark	\checkmark
	s.t.	$Ay + Bx \leq b$	-	Uniform	×	×	?

Theorem (GAPM, FL 2022)

If A is deterministic, then there exists a universal and local exact quantization.

Remaining cases

	F	- -		Α	(B , b)	с
$V(x) = \mathbb{E}$	$\min_{y \in \mathbb{R}^m}$	c ' y	Local	×	\checkmark	\checkmark
	s.t.	$Ay + Bx \leq b$	Uniform	×	×	\checkmark

Theorem (GAPM, FL 2022)

If A is deterministic, then there exists a universal and local exact quantization.

Theorem (Exact quantization, FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Maël Forcier

Élucubrations scientifiques

Contents

1 Local and Universal Exact Quantization for cost in 2-stage

- 2 Uniform and Universal Exact Quantization for cost in 2-stage
- 3 Uniform and Universal Exact Quantization for cost in multistage
- 4 Complexity results
- 5 Adaptive partition based methods

Reformulation of V(x) highlighting the role of the fiber P_x For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^\top y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

 $V(x) = \mathbb{E}\left[\min_{y \in P_x} \boldsymbol{c}^\top y\right]$ where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leq b\}$

Illustrative running example:

 $P_{\mathsf{x}} := \{ y \in \mathbb{R}^m \mid \|y\|_1 \leq 1, \\ y_1 \leq x, \ y_2 \leq x \}$

Reformulation of V(x) highlighting the role of the fiber P_x For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} \boldsymbol{c}^\top y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

 $V(x) = \mathbb{E}\left[\min_{y \in P_x} \boldsymbol{c}^\top y\right]$ where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leq b\}$

Illustrative running example:

$$\begin{aligned} & P_{\mathsf{x}} := \{ y \in \mathbb{R}^m \mid \|y\|_1 \leqslant 1, \\ & y_1 \leqslant x, \ y_2 \leqslant x \} \end{aligned}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

 $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_{x} is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, c^{\top}(y'-y) \leq 0\}$ the normal cone of P_x at y.

⋆ X₁

X2

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\boldsymbol{P}_{\mathsf{x}}) := \{N_{\boldsymbol{P}_{\mathsf{x}}}(\boldsymbol{y}) \,|\, \boldsymbol{y} \in \boldsymbol{P}_{\mathsf{x}}\}$$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

 $\mathcal{N}(P_{x}) := \{N_{P_{x}}(y) \mid y \in P_{x}\}$

with $N_{P_x}(y) = \{ c \mid \forall y' \in P_x, \ c^{\top}(y' - y) \leq 0 \}$ the normal cone of P_x at y.

Proposition

If P_x is bounded, $\{ri(N) \mid N \in \mathcal{N}(P_x)\}$ is a partition of \mathbb{R}^m .

 P_x and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{x}}\boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_{x})$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{x}}\boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_{x})$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg \,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_{x})$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{\mathbf{x}}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_{x})$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

----- X1

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{x}}\boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

 $- \underbrace{}_{} \underbrace{} \underbrace{}_{} \underbrace{}_{} \underbrace{}_{} \underbrace{}_{} \underbrace{}_{} \underbrace{} \underbrace{}_{} \underbrace{}_{} \underbrace{}$

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{\mathsf{x}}} \boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{x}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

----- x₁

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \boldsymbol{P}_{x}}\boldsymbol{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^{\top} y$ is constant for all $-c \in \operatorname{ri}(N)$.

----- x₁

 X_2

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y\in \mathbf{P}_{\mathbf{x}}} \mathbf{c}^{\top}y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg\,min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

Local and universal exact quantization for c

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

Local and universal exact quantization for \boldsymbol{c}

۱

Local and universal exact quantization for c

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$ where $y_{N}(x) \in \operatorname{arg min}_{y \in P_{x}} \underbrace{\boldsymbol{c}^{\top}}_{\in -\operatorname{ri} N} y$.
= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$
- c_{1}

$$\mathcal{N}(P_x)$$
 and $p_N \check{c}_N$ for $x = 0.3$

For
$$N \in \mathcal{N}(P_x)$$
, $p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$ $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

We replace the continuous cost c, by the discrete cost \check{c} .

Local and universal exact quantization for c

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$ where $y_{N}(x) \in \operatorname{arg\,min}_{y \in P_{x}} \underbrace{\boldsymbol{c}^{\top}}_{\in -\operatorname{ri} N} y$.
= $\sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\boldsymbol{c} \in -\operatorname{ri} N} \boldsymbol{c}^{\top}\right] y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$
= $\sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$
 $p_{N} \check{c}_{N} \text{ for } x = 0.3$

For $N \in \mathcal{N}(P_x)$, $p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$ $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

We replace the continuous cost c, by the discrete cost \check{c} .

Contents

Local and Universal Exact Quantization for cost in 2-stage

2 Uniform and Universal Exact Quantization for cost in 2-stage

3 Uniform and Universal Exact Quantization for cost in multistage

4 Complexity results

5 Adaptive partition based methods

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ → Y1 $-c_1$ ► X x = -0.2 $\mathcal{N}(P_x)$ P_x and $\mathcal{N}(P_x)$

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ $-c_1$ ► X x = -0.1 $\mathcal{N}(P_x)$ P_x and $\mathcal{N}(P_x)$
$P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ ► Y1 c_1 ► X P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ x = 0**P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 X_2 *Y*1 $-c_{2}$ ⋆ X₁ ► X P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ *x* = 0.1 **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 X2 $-c_{2}$ - x₁ ► X $\mathcal{N}(P_x)$ P_x and $\mathcal{N}(P_x)$ *x* = 0.5 **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 X2 $-c_{2}$ X_1 ► X 0.5 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ x = 0.5**P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 X2 $-c_{2}$ ► X1 ► X P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ x = 0.4**P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 X_2 *Y*1 $-c_{2}$ ► X 0.5 x = 0.1 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ ► Y₁ c_1 ► X 0.5 x = 0 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ → Y1 c_1 ► X 0.5 x = -0.1 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ → Y1 $-c_1$ ► X x = -0.20.5 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ → Y1 $-c_1$ ► X x = -0. P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

 $P_x := \{y \mid Ay + Bx \leq b\}$ and $P := \{(x, y) \mid Ay + Bx \leq b\}$ У2 *Y*2 *Y*1 $-c_{2}$ → y₁ $-c_1$ ► X x = -0.4 P_x and $\mathcal{N}(P_x)$ $\mathcal{N}(P_x)$ **P** and P_{x}

What are the constant regions of $x \mapsto \mathcal{N}(P_x)$?

Proposition

There exists a collection $C(P, \pi)$ called the **chamber complex** whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}(P_x)$.

I.e, for
$$\sigma \in C(P, \pi)$$
 and $x, x' \in ri(\sigma)$, we have $\mathcal{N}(P_x) = \mathcal{N}(P_{x'}) =: \mathcal{N}_{\sigma}$

Definition

The chamber complex $C(P, \pi)$ of P along π is

 $\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

V π F' Ρ P_{x} X $\sigma_{P,\pi}(x)$ $\pi($ •π(F

Definition

The chamber complex $C(P, \pi)$ of P along π is

 $\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Common Refinement of Normal Fans

We can quantize *c* on each chamber.

Common Refinement of Normal Fans

We can quantize *c* on each chamber.

For all
$$x \in \operatorname{ri}(\sigma)$$
, For all $x' \in \operatorname{ri}(\tau)$,
 $V(x) = \sum_{N \in \mathcal{N}_{\sigma}} p_N \min_{y \in P_x} \check{c}_N^\top y$ $V(x') = \sum_{N \in \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^\top y$

We take the *common refinement*:

$$\mathcal{R} := \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau} = \{ \mathcal{N} \cap \mathcal{N}' \mid \mathcal{N} \in \mathcal{N}_{\sigma}, \mathcal{N}' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^{\top} y$$

1

Common Refinement of Normal Fans

We can quantize *c* on each chamber.

For all
$$x \in \operatorname{ri}(\sigma)$$
, For all $x' \in \operatorname{ri}(\tau)$,
 $V(x) = \sum_{N \in \mathcal{N}_{\sigma}} p_N \min_{y \in P_x} \check{c}_N^\top y$ $V(x') = \sum_{N \in \mathcal{N}_{\tau}} p_N \min_{y \in P_x} \check{c}_N^\top y$

We take the *common refinement*:

$$\mathcal{R} := \mathcal{N}_{\sigma} \land \mathcal{N}_{\tau} = \{ \textit{N} \cap \textit{N}' \mid \textit{N} \in \mathcal{N}_{\sigma}, \textit{N}' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{R}} p_N \min_{y \in P_x} \check{c}_N^\top y$$

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at $ri(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- local exact quantization at $\operatorname{ri}(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Theorem (FGL21, Uniform and universal quantization of the cost) Let $\mathcal{R} = \bigwedge_{\sigma \in \mathcal{C}(P,\pi)} -\mathcal{N}_{\sigma}$, then for all $x \in \mathbb{R}^{n}$ $V(x) = \sum_{R \in \mathcal{R}} \check{p}_{R} \min_{y \in P_{x}} \check{c}_{R}^{\top} y$ where $\check{p}_{R} := \mathbb{P}[\mathbf{c} \in \operatorname{ri}(R)]$ and $\check{c}_{R} := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in \operatorname{ri}(R)]$

Theorem (FGL21)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (FGL21)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (FGL21)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\boldsymbol{E}}(b - Bx) = \sup_{\lambda \in \boldsymbol{E}} (b - Bx)^{\top} \lambda$$

Theorem (FGL21)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (FGL21)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\boldsymbol{E}}(b - Bx) = \sup_{\lambda \in \boldsymbol{E}} (b - Bx)^{\top} \lambda$$

where $\mathbf{E} := \mathbb{E}[D_{\mathbf{c}}] = \int D_{\mathbf{c}} \mathbb{P}(d\mathbf{c})$ is the weighted fiber polyhedron and $D_{\mathbf{c}} := \{\lambda \mid A^{\top}\lambda + \mathbf{c} = 0\}$ the dual admissible set.

Theorem (FGL21)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (FGL21)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\boldsymbol{E}}(b - Bx) = \sup_{\lambda \in \boldsymbol{E}} (b - Bx)^{\top} \lambda$$

where $\mathbf{E} := \mathbb{E}[D_{\mathbf{c}}] = \int D_{\mathbf{c}} \mathbb{P}(d\mathbf{c})$ is the weighted fiber polyhedron and $D_{\mathbf{c}} := \{\lambda \mid A^{\top}\lambda + \mathbf{c} = 0\}$ the dual admissible set.

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527–549, 1992.

Explicit computation of the example

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^2} & \boldsymbol{c}^\top y \\ \text{s.t. } \|y\|_1 \leqslant 1 \\ y_1 \leqslant x \\ y_2 \leqslant x \end{bmatrix}$$

Contents

1 Local and Universal Exact Quantization for cost in 2-stage

2 Uniform and Universal Exact Quantization for cost in 2-stage

3 Uniform and Universal Exact Quantization for cost in multistage

4 Complexity results

5 Adaptive partition based methods

$$V_t(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + \boldsymbol{V}_{t+1}(y) \\ \\ \text{s.t.} & (x, y) \in \boldsymbol{P}_t \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

→ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

→ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 \land epi(Q_t) appears in the constraint and depends on c_{t+1}, \cdots, c_T !

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

 V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

$$\begin{split} & \mathcal{V}_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)} \\ & \mathcal{Q}_t := \left(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1} \right) \wedge \mathcal{F} \big(\mathcal{P}_t \big) \end{split}$$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- \land epi(Q_t) appears in the constraint and depends on c_{t+1}, \cdots, c_T !

$$\begin{split} & V_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)} \\ & \mathcal{Q}_t := \left(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1} \right) \wedge \mathcal{F} \big(\mathcal{P}_t \big) \\ & \mathcal{P}_t := \mathcal{C} \big(\mathcal{Q}_t, \pi_x^{x,y} \big) \end{split}$$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{\substack{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}}} & \boldsymbol{c}_t^\top y + z \\ \text{s.t.} & (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with $Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$.

- → V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- $\underline{\land} epi(Q_t) appears in the constraint and depends on <math>c_{t+1}, \cdots, c_T !$

 $V_{t+1} \text{ affine on } \mathcal{P}_{t+1} \quad \text{(by assumption)}$ $\mathcal{Q}_t := (\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}) \land \mathcal{F}(\mathcal{P}_t)$ $\mathcal{P}_t := \mathcal{C}(\mathcal{Q}_t, \pi_x^{x,y})$

[FGL21, Lem. 4.1]: $\mathcal{P}_t \preccurlyeq \mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$ $\blacktriangleright V_t$ affine on \mathcal{P}_t , $\mathcal{N}(P_x)$ constant on \mathcal{P}_t

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$egin{aligned} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big((\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}ig(\mathcal{P}_t(\xi)ig), \pi^{x_{t-1},x_t}_{x_{t-1}}ig) \ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \mathsf{supp}} \mathcal{P}_{t,\xi} \end{aligned}$$

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$\mathcal{P}_{t,\xi} := \mathcal{C}\Big((\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}(\mathcal{P}_t(\xi)), \pi_{x_{t-1}}^{x_{t-1}, x_t} \Big)$$

 $\mathcal{P}_t := \bigwedge_{\xi_t \in \mathsf{supp}\, \boldsymbol{\xi}_t} \mathcal{P}_{t,\xi}$

Theorem (FGL21)

All results generalizes to MSLP with finitely supported stochastic constraints.

- (V_t)_t are affine on universal chamber complexes,
 i.e. independent of the law of (c_t)_t
- ➡ We have an uniform and universal exact quantization.

Contents

1 Local and Universal Exact Quantization for cost in 2-stage

2 Uniform and Universal Exact Quantization for cost in 2-stage

3 Uniform and Universal Exact Quantization for cost in multistage

4 Complexity results

5 Adaptive partition based methods

Volume of a polytope

$$\mathsf{Vol}\left(\{z \in \mathbb{R}^d \,|\, Az \leqslant b\}\right) \text{ or } \\ \mathsf{Vol}\left(\mathsf{Conv}(v_1, \cdots, v_n)\right)$$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension d: Lawrence (1991)

Volume of a polytope

 $\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$ or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^{n}} c^{\top} x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^{m}} q^{\top} y \\ \text{s.t. } Tx + Wy \leqslant h \end{bmatrix}$$

s.t. $Ax \leqslant b$

2-stage linear problem

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m?

Volume of a polytope

 $\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$ or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^n} c^\top x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} q^\top y \\ \text{s.t. } Tx + Wy \leqslant h \end{bmatrix}$$

s.t. $Ax \leqslant b$

2-stage linear problem

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

Volume of a polytope

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$$
 or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

$$\min_{x \in \mathbb{R}^n} c^\top x + \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} q^\top y \\ \text{s.t. } Tx + Wy \leqslant h \end{bmatrix}$$

s.t. $Ax \leqslant b$

- #P-complete:
 Dyer and Frieze (1988)
- Polynomial for fixed dimension *d*: Lawrence (1991)
- #*P*-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)
 - \rightsquigarrow Exact case
 - \rightsquigarrow Approximated case

2-stage linear problem

Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹ Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

¹No requirement for the first decision.

Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹ Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

⇒ Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\boldsymbol{c}|\boldsymbol{c} \in C, (\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$ and $\mathbb{P}[\boldsymbol{c} \in C|(\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$.

¹No requirement for the first decision.

Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹ Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

⇒ Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\boldsymbol{c}|\boldsymbol{c} \in C, (\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$ and $\mathbb{P}[\boldsymbol{c} \in C|(\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$.

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1 - \alpha$, when T, n_1, \dots, n_T are fixed.

¹No requirement for the first decision.
Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹ Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible or finds an ε -solution in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

⇒ Can be adapted to exact complexity when we can compute exactly $\mathbb{E}[\boldsymbol{c}|\boldsymbol{c} \in C, (\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$ and $\mathbb{P}[\boldsymbol{c} \in C|(\boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t) = (A, B, b)]$.

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1 - \alpha$, when T, n_1, \dots, n_T are fixed. Same with SDDP: [Lan 2020][Zhang and Sun 2020]

¹No requirement for the first decision.

Contents

Local and Universal Exact Quantization for cost in 2-stage

2 Uniform and Universal Exact Quantization for cost in 2-stage

3 Uniform and Universal Exact Quantization for cost in multistage

4 Complexity results

$$\min_{\substack{x \in \mathbb{R}^n_+ \\ \text{s.t.}}} c^\top x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x,\xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leq q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$$

$$\min_{x \in \mathbb{R}^n_+} \quad c^\top x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas \boldsymbol{q} and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leq q$

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^I \mid W^\top \lambda \leqslant q \}$$

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in \mathbb{R}^n_+} \quad c^\top x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leq q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$$

$$\min_{x \in \mathbb{R}^n_+} \quad c^\top x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leq q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$$

$$\min_{x \in \mathbf{X}} \quad c^{\top}x + \mathbb{E}\left[Q(x,\boldsymbol{\xi})\right]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x,\xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$$

$$\min_{x \in \mathbf{X}} \quad c^{\top} x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x,\xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

 $X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x.

¹Can be extended to generic random \boldsymbol{q} , and finitely supported \boldsymbol{W}

$$\min_{x \in \mathbf{X}} \quad c^{\top} x + \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x,\xi) := \min_{y \in \mathbb{R}^m_+} q^\top y \qquad \qquad = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

 $X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \qquad D := \{ \lambda \in \mathbb{R}^l \mid W^\top \lambda \leqslant q \}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x. \rightsquigarrow need to discretize ξ

¹Can be extended to generic random q, and finitely supported W

Maël Forcier

Partitioning the cost-to-go function

 $V(x) = \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right] \qquad V_N^{SAA}(x) = \frac{1}{N} \sum_{k=1}^N Q(x, \xi^k) \qquad V_{\mathcal{P}}(x)$

Definition (Partitioned expected-cost-go)

Let \mathcal{P} be a \mathbb{P} -partition of Ξ , we define

$$V_{\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P])$$

Properties of partitioned cost-to-go Recall that

$$V(x) = \mathbb{E} \Big[Q(x, \xi) \Big]$$
$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P} \big[P \big] Q \big(x, \mathbb{E} \big[\xi | P \big] \big)$$

• $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leq V$.

Finally,

$$\min_{x \in X} c^{\top} x + V_{\mathcal{P}}(x) \qquad (2SLP_{\mathcal{P}})$$

is equivalent to

$$\min_{\substack{\in X, (y_P)_{P \in \mathcal{P}}}} c^{\top} x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_P$$
$$\mathbb{E}[\mathbf{T}|P] x + W y_P \leq \mathbb{E}[\mathbf{h}|P] \quad \forall P \in \mathcal{P}$$

Properties of partitioned cost-to-go Recall that

$$V(x) = \mathbb{E} \Big[Q(x, \xi) \Big]$$
$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P} \Big[P \Big] Q \Big(x, \mathbb{E} \big[\xi | P \big] \Big)$$

• $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leq V$.

Q(·, E[ξ|P]) is polyhedral → V_P is polyhedral.

Finally,

$$\min_{x \in X} c^{\top} x + V_{\mathcal{P}}(x)$$
 (2SLP_P)

is equivalent to

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}}} c^{\top} x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_P$$
$$\mathbb{E}[T|P] x + W y_P \leq \mathbb{E}[h|P] \qquad \forall P \in \mathcal{P}$$

Adapted partition

Definition

We say that a partition ${\mathcal P}$ is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \boldsymbol{\xi})\right]$$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \boldsymbol{\xi})\right]$$

Definition

An partition oracle is a function taking a first stage decision x^k as argument and returning an partition of Ξ .

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \boldsymbol{\xi})\right]$$

Definition

An partition oracle is a function taking a first stage decision x^k as argument and returning an partition of Ξ .

Definition

An adapted partition oracle is a function taking a first stage decision x^k as argument and returning an adapted to x^k partition of Ξ .

Refinement

 $\mathcal{R} \text{ refines } \mathcal{P} (\mathcal{R} \preccurlyeq \mathcal{P}) \text{ if}$ $\forall R \in \mathcal{R}, \exists P \in P, R \subset P$ $[\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \text{ if } \mathcal{R} \text{ refines } \mathcal{P} \text{ up to } \mathbb{P}\text{-null sets.}] \qquad \mathcal{P} \qquad \mathcal{R}$

Then,
$$\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \Rightarrow V_{\mathcal{R}} \ge V_{\mathcal{P}}$$

Refinement

 $\mathcal{P} \wedge \mathcal{P}'$

General framework for APM

$$\begin{aligned} k \leftarrow 0, \ z_U^0 \leftarrow +\infty, \ z_L^0 \leftarrow -\infty, \ \mathcal{P}^0 \leftarrow \{\Xi\} \ ; \\ \text{while } z_U^k - z_L^k > \varepsilon \text{ do} \\ | \ k \leftarrow k + 1; \\ \text{Solve (for } x^k) \qquad z_L^k \leftarrow \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x) \ ; \\ \mathcal{P}_{x^k} \leftarrow \text{Oracle}(x^k) \ ; \\ \mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^k} \ ; \\ | \ z_U^k \leftarrow \min\left(z_U^{k-1}, c^\top x^k + V_{\mathcal{P}^k}(x^k)\right) \ ; \end{aligned}$$

end

Algorithm 1: Generic framework for APM.

General framework for APM

$$\begin{aligned} k \leftarrow 0, \ z_U^0 \leftarrow +\infty, \ z_L^0 \leftarrow -\infty, \ \mathcal{P}^0 \leftarrow \{\Xi\} \ ; \\ \text{while } z_U^k - z_L^k > \varepsilon \text{ do} \\ k \leftarrow k + 1; \\ \text{Solve (for } x^k) \qquad z_L^k \leftarrow \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x) \ ; \\ \mathcal{P}_{x^k} \leftarrow \text{Oracle}(x^k) \ ; \\ \mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^k} \ ; \\ z_U^k \leftarrow \min\left(z_U^{k-1}, c^\top x^k + V_{\mathcal{P}^k}(x^k)\right) \ ; \end{aligned}$$

end

Algorithm 1: Generic framework for APM.

Theorem (FL2021)

If the oracle is adapted, then x^k is an ε -solution of problem (2SLP) for $k \ge \left(\frac{Ldiam(X)}{\varepsilon} + 1\right)^n$.

Lemma (Song & Luedtke)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

 $\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$

Lemma (Song & Luedtke)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

 $\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Lemma (Song & Luedtke)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

 $\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Lemma (Song & Luedtke)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

 $\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Lemma (Song & Luedtke)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

 $\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$

Lemma (Ramirez-Pico & Moreno)

Let \mathcal{P} a partition of Ξ . If there exists $\lambda(\boldsymbol{\xi})$ such that, for all $P \in \mathcal{P}$,

$$\mathbb{E}[\boldsymbol{h}|P]^{\top}\mathbb{E}[\lambda(\boldsymbol{\xi})|P] = \mathbb{E}[\boldsymbol{h}^{\top}\lambda(\boldsymbol{\xi})|P]$$
$$x^{\top}\mathbb{E}[\boldsymbol{T}|P]^{\top}\mathbb{E}[\lambda(\boldsymbol{\xi})|P] = x^{\top}\mathbb{E}[\boldsymbol{T}^{\top}\lambda(\boldsymbol{\xi})|P]$$

then \mathcal{P} is an adapted partition.

A (partial) comparison between partition based results

Paper	Song, Luedtke (2015)	Ramirez-Pico, Moreno (2020)	Forcier, L.
	(2013)		(2021)
Non-finite $supp(m{\xi})$	×	\checkmark	\checkmark
Explicit oracle	\checkmark	×	\checkmark
Proof of convergence	\checkmark	×	\checkmark
Complexity result	×	×	\checkmark
Fast iteration	\checkmark	×	×

Local exact quantization and adapted partition Local exact quantization GAPM

random cost

Recall that for a fixed x,

$$\mathbb{E}\left[\min_{y\in P_{x}} \boldsymbol{c}^{\top} y\right] = \sum_{N\in\mathcal{N}(P_{x})} p_{N} \min_{y\in P_{x}} \check{c}_{N}^{\top} y$$

where,

$$p_{N} := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$

$$\check{c}_{N} := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$$

$$\boldsymbol{P}_{\mathsf{x}} := \{ y \in \mathbb{R}^{m} \mid Ay + Bx \leqslant b \}$$

random constraints

Similarly, for a given q, and all x,

$$V(x) := \mathbb{E} [Q(x, \xi)]$$

= $\mathbb{E} [\max_{\lambda \in D_q} (h - Tx)^{\top} \lambda]$
= $\sum_{N \in \mathcal{N}(D_q)} p_N \max_{\lambda \in D_q} \psi_{N,x}^{\top} \lambda$

where,

$$p_{N} := \mathbb{P}[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N}]$$
$$\psi_{N, \boldsymbol{x}} := \mathbb{E}[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \mid \boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N}]$$
$$\boldsymbol{D}_{\boldsymbol{q}} := \{\lambda \in \mathbb{R}^{I} \mid \boldsymbol{W}^{\top} \lambda \leqslant \boldsymbol{q}\}$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{\xi \in \Xi \mid h - Tx \in \mathsf{ri} N\}$$

Theorem (FL 2021)

 $\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\} \text{ is an adapted partition to } x \text{ i.e. } V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$V(x) := \mathbb{E} [Q(x, \xi)]$$

= $\sum_{N \in \mathcal{N}(D)} \mathbb{P} [h - Tx \in \operatorname{ri} N] \min_{\lambda \in D} \mathbb{E} [h - Tx | h - Tx \in \operatorname{ri} N]^{\top} \lambda$
= $\sum_{N \in \mathcal{N}(D)} \mathbb{P} [\xi \in E_{N,x}] Q (\mathbb{E} [\xi | \xi \in E_{N,x}], x) = V_{\mathcal{R}_x}(x)$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{\xi \in \Xi \mid h - Tx \in \mathsf{ri} N\}$$

Theorem (FL 2021)

 $\mathcal{R}_{x} := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_{q}) \right\} \text{ is an adapted partition to } x \text{ i.e. } V_{\mathcal{R}_{x}}(x) = V(x)$

Proof:

$$\begin{split} \begin{split} \mathcal{I}(x) &:= \mathbb{E} \big[Q(x, \boldsymbol{\xi}) \big] \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{h} - \boldsymbol{T} x \in \operatorname{ri} N \big] \min_{\lambda \in D} \mathbb{E} \big[\boldsymbol{h} - \boldsymbol{T} x | \boldsymbol{h} - \boldsymbol{T} x \in \operatorname{ri} N \big]^{\top} \lambda \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{\xi} \in E_{N, x} \big] Q \Big(\mathbb{E} \big[\boldsymbol{\xi} | \boldsymbol{\xi} \in E_{N, x} \big], x \Big) = V_{\mathcal{R}_{x}}(x) \end{split}$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{\xi \in \Xi \mid h - Tx \in \mathsf{ri} N\}$$

Theorem (FL 2021)

 $\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\} \text{ is an adapted partition to } x \text{ i.e. } V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$\begin{aligned} \mathcal{V}(x) &:= \mathbb{E} \left[Q(x, \boldsymbol{\xi}) \right] \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \left[\boldsymbol{h} - \boldsymbol{T} x \in \operatorname{ri} N \right] \min_{\lambda \in D} \mathbb{E} \left[\boldsymbol{h} - \boldsymbol{T} x \left| \boldsymbol{h} - \boldsymbol{T} x \in \operatorname{ri} N \right]^{\top} \lambda \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \left[\boldsymbol{\xi} \in E_{N, x} \right] Q \left(\mathbb{E} \left[\boldsymbol{\xi} \left| \boldsymbol{\xi} \in E_{N, x} \right], x \right) = V_{\mathcal{R}_{x}}(x) \end{aligned}$$

➡ Is it the coarsest one ?

CNS conditions for a partition to be adapted

Theorem (FL 2021)

For $x \in \mathbb{R}^n$ and \mathcal{P} a partition of Ξ , there exists $\overline{\mathcal{R}}_x \succcurlyeq_{\mathbb{P}} \mathcal{R}_x$ such that

$$\mathcal{P} \preccurlyeq_{\mathbb{P}} \overline{\mathcal{R}}_x \iff V_{\mathcal{P}}(x) = V(x).$$

- If $\boldsymbol{\xi}$ admits a density, $\mathcal{R}_x =_{\mathbb{P}} \overline{\mathcal{R}}_x$.
- An oracle is adapted if and only if it returns a partition \mathcal{P} refining $\overline{\mathcal{R}}_x$.

Stochastic cost and recourse

- We have shown a local exact quantization result for random T, h, and deterministic q, W.
- If **q** and **W** are finitely supported random variable:
 - () compute an exact quantization \mathcal{N}_{ξ} for every element of the support; () take the common refinement.

We have seen that we can deal with non-finitely supported **q** through the chamber complexes.

Can we do the same here ?

Stochastic cost and recourse

- We have shown a local exact quantization result for random T, h, and deterministic q, W.
- If **q** and **W** are finitely supported random variable:
 - **(**) compute an exact quantization \mathcal{N}_{ξ} for every element of the support;
 - 2 take the common refinement.

We have seen that we can deal with non-finitely supported \boldsymbol{q} through the chamber complexes.

➡ Can we do the same here ?

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_q := \{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \}$$
$$\Delta := \{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^m \mid W^{\top} \lambda \leqslant q \}$$
$$\mathcal{R}_{x,q} := \{ E_{N,x} \mid N \in \mathcal{N}(D_q) \}$$

Recall that $q \mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q})$ and so is $\mathcal{R}_{x,q}$. we can take the common refinement of a finite number of $\mathcal{R}_{x,q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q}) = \Sigma$ -fan $(W)^2$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- $\models \ \{ \operatorname{ri}(S) × R \, | \, S \in \Sigma \, \text{-fan}(W), R \in \mathcal{R}_{x,S} \} \text{ is an adapted partition to } x.$

The well studied secondary fan of W

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_q := \{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \}$$
$$\Delta := \{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^m \mid W^{\top} \lambda \leqslant q \}$$
$$\mathcal{R}_{x,q} := \{ E_{N,x} \mid N \in \mathcal{N}(D_q) \}$$

Recall that $q \mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda,q})$ and so is $\mathcal{R}_{x,q}$. \clubsuit we can take the common refinement of a finite number of $\mathcal{R}_{x,q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda,q}) = \Sigma$ -fan $(W)^2$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- $\models \ \{ \operatorname{ri}(S) × R \, | \, S \in \Sigma \, \text{-fan}(W), R \in \mathcal{R}_{x,S} \} \text{ is an adapted partition to } x.$

The well studied secondary fan of W

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_q := \{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \}$$
$$\Delta := \{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \mid W^{\top} \lambda \leqslant q \}$$
$$\mathcal{R}_{x,q} := \{ E_{N,x} \mid N \in \mathcal{N}(D_q) \}$$

Recall that $q \mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q})$ and so is $\mathcal{R}_{x,q}$. \clubsuit we can take the common refinement of a finite number of $\mathcal{R}_{x,q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q}) = \Sigma \operatorname{-fan}(W)^2$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- $► { ri(S) × R | S ∈ Σ fan(W), R ∈ R_{x,S} } is an adapted partition to x.$

²The well studied secondary fan of W

Synthesis of local and uniform quantization results

	W	$(\boldsymbol{T}, \boldsymbol{h})$	q
Local	Ø	\mathcal{R}_{x}	$\mathcal{N}(P_x)$
Uniform	Ø	Ø	$\bigwedge_{\sigma\in\mathcal{C}(P,\pi)}\mathcal{N}_{\sigma}$
Subgradient of partition function

Recall that if $\mathcal{P} \preccurlyeq_{\mathbb{P}} \mathcal{R}_x$ then

$$egin{aligned} V_{\mathcal{R}_x}(x) &= V_{\mathcal{P}}(x) = V(x) \ V_{\mathcal{R}_x}(\cdot) &\leq V_{\mathcal{P}}(\cdot) \leqslant V(\cdot) \end{aligned}$$

Lemma

Let $x \in \text{dom}(V)$ and \mathcal{P} be a refinement of \mathcal{R}_x , i.e. $\mathcal{P} \preccurlyeq \mathcal{R}_x$, then

$$\partial V_{\mathcal{R}_x}(x) \subset \partial V_{\mathcal{P}}(x) \subset \partial V(x)$$

Furthermore, if $x \in ridom(V)$ *,*

$$\partial V_{\mathcal{R}_x}(x) = \partial V_{\mathcal{P}}(x) = \partial V(x)$$

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

If $X \cap \text{dom}(V) \subset \mathbb{R}^+$ is contained in a ball of diameter $M \in \mathbb{R}^+$ and $x \to c^\top x + V(x)$ is Lipschitz with constant L then the partition based method finds an ε -solution in at most $\left(\frac{LM}{\varepsilon} + 1\right)^n$ iterations.

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P]).$

Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\boldsymbol{\xi} | C]$ when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential		
	$rac{\mathbbm{1}_{\xi\in Q}}{\operatorname{Vol}_d(Q)}\mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$\frac{e^{\theta^{\top}\xi}\mathbb{1}_{\xi\in K}}{\Phi_{K}(\theta)}\mathcal{L}_{\mathrm{Aff}(K)}(d\xi)$		
Support	Polytope : Q	Cone : K		
	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{K}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	$\operatorname{Ang}\left(M^{-1}S\right)$	
$\mathbb{E}\left[\boldsymbol{\xi} \mid \boldsymbol{S}\right]$	$\frac{1}{d}\sum_{v\in \operatorname{Vert}(S)}v$	$\left(\sum_{r\inRay(S)}\frac{-r_i}{r^{\top}\theta}\right)_{i\in[m]}$		

Explicit formulas for usual distributions

Recall that $V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P] Q(x, \mathbb{E}[\boldsymbol{\xi}|P]).$

Thus, we need to compute $\mathbb{P}[C]$ and $\mathbb{E}[\boldsymbol{\xi} | C]$ when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	Gaussian	
$d\mathbb{P}(\xi)$	$rac{\mathbb{1}_{\xi\in Q}}{\operatorname{Vol}_d(Q)}\mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$rac{e^{ heta^{ op \xi}} \mathbb{1}_{\xi \in \mathcal{K}}}{\Phi_{\mathcal{K}}(heta)} \mathcal{L}_{\mathrm{Aff}(\mathcal{K})}(d\xi)$	$\frac{e^{-\frac{1}{2}\xi^{\top}M^{-2}\xi}}{(2\pi)^{\frac{m}{2}}\det M}d\xi$	
Support	Polytope : Q	Cone : K	\mathbb{R}^{m}	
$\mathbb{P}[S]$	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{\mathcal{K}}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	Ang $(M^{-1}S)$	
$\mathbb{E}[\boldsymbol{\xi} \mid S]$	$rac{1}{d}\sum_{v\in Vert(S)}v$	$\left(\sum_{r\inRay(S)}\frac{-r_i}{r^{\top}\theta}\right)_{i\in[m]}$	$\frac{\sqrt{2}\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2})}M\operatorname{Ctr}\left(S\cap \mathbb{S}_{m-1}\right)$	

Numerical Results - LandS

Results given by GAPM for LandS problem³

³illustration from Ramirez-Pico and Moreno

Numerical Results - ProdMix

k	x _k	z_L^k	z_U^k	Gap	$ \mathcal{P}_k^{max} $
1	(1333.33, 66.67)	-18666.67	-16939.71	9.3%	4
2	(1441.41, 59.57)	-17873.01	-17383.73	2.7%	9
3	(1399.05, 57.91)	-17789.88	-17659.19	0.74%	16
4	(1379.98, 56.64)	-17744.67	-17708.00	0.20%	25
5	(1371.36, 55.71)	-17718.96	-17709.05	0.056%	36
6	(1375.55, 56.21)	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10 000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711, with radius 2.2.

- Uniform and universal exact quantization for an MSLP
 - New complexity results.

Unfortunately this quantization might be very large.

- Local exact quantization for c
 - Higher order simplex algorithm on the chamber complex for 2SLP.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

• Uniform and universal exact quantization for an MSLP

New complexity results.

Unfortunately this quantization might be very large.

• Local exact quantization for c

- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

• Uniform and universal exact quantization for an MSLP

New complexity results.

Unfortunately this quantization might be very large.

• Local exact quantization for c

- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

• Uniform and universal exact quantization for an MSLP

► New complexity results.

Unfortunately this quantization might be very large.

• Local exact quantization for c

- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

• Uniform and universal exact quantization for an MSLP

New complexity results.

Unfortunately this quantization might be very large.

• Local exact quantization for c

- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision.
- Extension of Stochastic Dual Dynamic Programming algorithms for non finitely supported distribution.
- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope.

Thank you for listening ! Any question ?

M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems.

arXiv preprint arXiv:2107.09566 (2021).

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization.

Operation Research Letters, to appear (2022).

M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

HAL Id : hal-03683697 (2022).

