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Modeling hydroelectric energy storage management

At step t

u water hustled

demand

cost of unmet demand

water in the reservoir

x capacity of the reservoir

rain and runoff

water evacuated by the valve

min

0 66

= −

, 0 6 x1 6 x
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At step t

u water hustled

d demand

c cost of unmet demand

water in the reservoir

x capacity of the reservoir

w rain and runoff

v water evacuated by the valve

min
u

c(d − u)

s.c . 0 6 u 6 d

x1 = x0 − u
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Modeling hydroelectric energy storage management

At step t

u water hustled

d demand

c cost of unmet demand

x0/x1 water in the reservoir

x capacity of the reservoir

w rain and runoff

v water evacuated by the valve

min
u

c(d − u)

s.c . 0 6 u 6 d

x1 = x0 − u + w

0 6 x0 6 x , 0 6 x1 6 x
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Modeling hydroelectric energy storage management

At step t

u water hustled

d demand

c cost of unmet demand

x0/x1 water in the reservoir

x capacity of the reservoir

w rain and runoff

v water evacuated by the valve

min
u,v

c(d − u)

s.c . 0 6 u 6 d

x1 = x0 − u + w − v

0 6 x0 6 x , 0 6 x1 6 x

0 6 v
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Modeling hydroelectric energy storage management

At step t

ut water hustled

dt demand

ct cost of unmet demand

xt water in the reservoir

x capacity of the reservoir

wt rain and runoff

vt water evacuated by the valve

min
ut ,vt

T∑
t=1

ct(dt − ut)

s.c . ∀t ∈ [T ], 0 6 ut 6 dt

∀t ∈ [T ], xt+1 = xt − ut + wt − vt

∀t ∈ [T ], 0 6 xt 6 x

, 0 6 x1 6 x

∀t ∈ [T ], 0 6 vt
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Linear Programming

min
x∈Rn

c>x

s.t. Ax 6 b

Example: P = {x ∈ Rn |Ax 6 b}

A =



1 1

1 −1
− 1 −1
− 1 1
1 0
0 1
− 1 0


b =



1

1
1
1

0.5
0.5
− 1.2



x1 + x2 6 1 (1)

x1 − x2 6 1

(2)

− x1 − x2 6 1

(3)

− x1 + x2 6 1

(4)

x1 6 0.5

(5)

x2 6 0.5

(6)

x1 > −1.2

(7)

1

1

2

1

23

1

23

4
1

5

2
3

4 1

5

2
3

4
6 1

5

2
3

4
6

7
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x2

Maël Forcier Élucubrations scientifiques 17/10/2022 3 / 52



Linear Programming

min
x∈Rn

c>x

s.t. Ax 6 b

Example: P = {x ∈ Rn |Ax 6 b}

A =



1 1
1 −1

− 1 −1
− 1 1
1 0
0 1
− 1 0


b =



1
1

1
1

0.5
0.5
− 1.2



x1 + x2 6 1 (1)

x1 − x2 6 1 (2)

− x1 − x2 6 1

(3)

− x1 + x2 6 1

(4)

x1 6 0.5

(5)

x2 6 0.5

(6)

x1 > −1.2

(7)

1

1

2

1

23

1

23

4
1

5

2
3

4 1

5

2
3

4
6 1

5

2
3

4
6

7

x1

x2
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6

• x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = ∅
To ease the notation, we write:

I(A, b) =
{
∅,

5, 156, 6, 46, 4, 34, 3, 23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}
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2
3

4

5

6

• x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {5}
To ease the notation, we write:

I(A, b) =
{
∅, 5,

156, 6, 46, 4, 34, 3, 23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6 •
x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {1, 5, 6}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156,

6, 46, 4, 34, 3, 23, 2, 25

}
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Active constraints

Definition
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I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6•
x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {6}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6,

46, 4, 34, 3, 23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6•
x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {4, 6}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46,

4, 34, 3, 23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6
•

x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {4}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46, 4,

34, 3, 23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6

• x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {3, 4}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46, 4, 34,

3, 23, 2, 25

}

Maël Forcier Élucubrations scientifiques 17/10/2022 4 / 52



Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6

•
x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {3}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46, 4, 34, 3,

23, 2, 25

}
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7

1

2
3

4

5

6

•

x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {2, 3}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46, 4, 34, 3, 23,

2, 25

}
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x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {2}
To ease the notation, we write:
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Active constraints

Definition

We denote by I(A, b), the collection of sets of active constraints as :

I(A, b) = {IA,b(x) | Ax 6 b}

with IA,b(x) := {i ∈ [q] | Aix = bi}

7
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2
3

4

5

6

•
x1

x2

P = {x ∈ Rn |Ax 6 b}

IA,b(x) = {2, 5}
To ease the notation, we write:

I(A, b) =
{
∅, 5, 156, 6, 46, 4, 34, 3, 23, 2, 25
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = ∅

7

1

2
3

4

5

6

x1

x2

P, P I
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Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {5}
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Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {1, 5, 6}
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {6}
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {4, 6}
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1

2
3

4

5

6

x1

x2

•

P, P I
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Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {4}
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {3, 4}
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
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Faces

Definition

Let I ∈ I(A, b), we denote by P I the face of P such that:

P I = {x ∈ P |AI x = bI}

We have dim(P I ) = n − rg(AI )
Example for I = {2, 5}
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Polyhedra without any vertex ?

Definition (Lineality space)

Lin(C ) := {u ∈ C | ∀t ∈ R, ∀x ∈ c , x + tu ∈ C}.

Lin
(
{x |Ax 6 b}

)
= Ker(A)

x1

x2
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Bases and Vertices

Let P = {x ∈ Rn|Ax 6 b} with A ∈ Rp×n and b ∈ Rp.

Definition

A basis B is a subset of [p] such that AB = (Ai ,j)i∈B,16j6n is invertible.
A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

Vert(P) 6= ∅ ⇐⇒ A admits at least one basis

⇐⇒ rg(A) = n

⇐⇒ Lin(P) = {0}

Under this assumption,
For every I ∈ I(A, b)max, we can extract a basis BI and P I = {A−1

BI
bBI
}.

If c /∈ Lin(P)⊥ = Im(A>), minx∈P c>x = −∞.
Otherwise, we can write P = P0 + Lin(P) with Lin(P0) = {0}:
We make this assumption without loss of generality
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Simplex method

Geometrically:
follow a path on the polyhedron from
vertex to vertex

7 5

6 1

2
3

4 •
x1

x2

Combinatorially:
pivoting from basis to basis

B1 = {1, 5}

B2 = {1, 6}
B3 = {4, 6}
B2 = {3, 4}
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Modeling hydroelectric energy storage management

At step t

ut water hustled

dt demand

ct cost of unmet demand

xt water in the reservoir

x capacity of the reservoir

wt rain and runoff

vt water evacuated by the valve

min
ut ,vt

E
[

T∑
t=1

ct(dt − ut)

]

s.c . ∀t ∈ [T ], 0 6 ut 6 dt

∀t ∈ [T ], xt+1 = xt − ut + wt − vt

∀t ∈ [T ], 0 6 xt 6 x

∀t ∈ [T ], 0 6 vt

∀t ∈ [T ], σ(ut , vt) ⊂ σ(dτ ,wτ )τ6t
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Multistage stochastic linear programming (MSLP)

min
(xt)t∈[T ]

E
[ T∑
t=1

c>t xt
]

s.t. Atxt + Btxt−1 6 bt ∀t ∈ [T ]

σ(xt) ⊂ σ(cτ ,Aτ ,Bτ ,bτ )τ6t ∀t ∈ [T ]

x0 ≡ x0 given

ξt = (ct ,At ,Bt ,bt)t∈[T ] is assumed to be stagewise independent.

We set VT+1 ≡ 0 and:

Vt(xt−1) := E
[
V̂t(xt−1, ξt)

]
:= E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt


å How to deal with continuous distributions ?
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Maël Forcier Élucubrations scientifiques 17/10/2022 10 / 52



Quantization of a MSLP
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Real problem

Vt(x) = E
[
V̂t

(
x , ξt

)]
= E

 min
y∈Rnt

c>t y + Vt+1(y)

s.t. Aty + Btx 6 bt


ξt continuous
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Maël Forcier Élucubrations scientifiques 17/10/2022 11 / 52

Real problem

Vt(x) = E
[
V̂t

(
x , ξt

)]
= E

 min
y∈Rnt

c>t y + Vt+1(y)

s.t. Aty + Btx 6 bt


ξt continuous

Sample Average Approximation (SAA)

V SAA
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1

N
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V̂t
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x , ξk
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ξ1, · · · , ξN drawn by Monte Carlo
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]

If ξ 7→ V̂ (x , ξ) is convex, Vt,P(x) 6 Vt(x).
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Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a
finitely supported (ξ̌t)t∈[T ] i.e. such that

Vt(x) = E
[
V̂t(x , ξt)

]
= E

[
V̂t(x , ξ̌t)

]
.

We call an exact quantization

uniform if it is locally exact at all x ∈ Rnt , and all t ∈ [T ].

universal if there exists a partition Pt,x such that the induced
quantization is exact at time t on x , for all distributions of (ξτ )τ∈[T ].

Questions:

1 Under which condition does there exist an exact quantization ?

2 Can we construct a uniform and universal exact quantization ?
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A first counter example

Assume Vt+1 ≡ 0 and denote V := Vt , V̂ := V̂t and ξ := ξt for now.

Let A = (−u), B ≡ (0), b ≡ (−1) where u ∼ U
(
[1, 2]

)
.

V̂ (x , ξ) =
min
y∈R

y

s.t. uy > 1
=

1

u

By strict convexity, for all partition P∑
P∈P

p̌P V̂
(
x , ξ̌P

)
< V (x) = E

[ 1

u

]
with p̌P = P

[
ξ ∈ P

]
, ξ̌P = E

[
ξ | ξ ∈ P

]
.

å There is no partition-based local, neither uniform nor universal, exact
quantization result for A non-finitely supported.
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Uniform exact quantization and polyhedrality
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V̂ (x , ξ) = min
y∈Rm

c>y

s.t. Ay + Bx 6 h

= min
y∈Rm

Qξ(x , y)

with Qξ(x , y) := c>y + I(x ,y)∈P .

V̂ (·, ξ) is polyhedral because
epi
(
V̂ (·, ξ)

)
is the projection of

epi(Qξ).

y

x

z

P

c

epi(Qξ)

epi
(
V̂ (·, ξ)

)

V (x) = E
[
V̂ (x , ξ)

]
=
∑

ξ∈supp(ξ̌) pξV̂ (x , ξ)

å If the noise is finitely supported, then V is polyhedral

å Existence of uniform exact quantization implies
polyhedrality of V .
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Counter examples with stochastic constraints

Stochastic B

V (x) = E


min
y∈Rm

y

s.t. ux − y 6 0

y > 1


= E

[
max(ux , 1)

]
=

{
1 if x 6 1
x
2 + 1

2x if x > 1

Stochastic b

V (x) = E


min
y∈Rm

y

s.t. y > u
x − y 6 0


= E

[
max(x ,u)

]
=


1
2 if x 6 0
x2+1

2 if x ∈ [0, 1]

x if x > 1

å V is not polyhedral ⇒ No uniform exact quantization for non-finitely
supported B and b.

u is uniform on [0, 1]
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Remaining cases

V (x) = E

min
y∈Rm

c>y

s.t. Ay + Bx 6 b


(,A(, (B,b) (,c (,

Local × ? ?

Uniform × × ?

Theorem (GAPM, FL 2022)

If A is deterministic,
then there exists a universal and local exact quantization.

Theorem (Exact quantization, FGL 2021)

If A, B and b are deterministic,
then there exists a universal and uniform exact quantization.
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Reformulation of V (x) highlighting the role of the fiber Px

For a given x , (we still assume Vt+1 ≡ 0)

V (x) := E

min
y∈Rm

c>y

s.t. Ay + Bx 6 b


V (x) = E

[
min
y∈Px

c>y
]

where Px := {y ∈ Rm | Ay + Bx 6 b}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1,

y1 6 x , y2 6 x} x

y1

y2
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Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

•

NPx (y) for x = 0.3

• x1

x2

Px , y and NPx (y) for x = 0.3

Maël Forcier Élucubrations scientifiques 17/10/2022 18 / 52



Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′ − y) 6 0} the normal cone of Px at y .

Proposition

If Px is bounded, {ri(N) | N ∈ N (Px)} is a partition of Rm.

−c1

−c2

NPx (y) for x = 0.3

• x1

x2

Px , y and NPx (y) for x = 0.3
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N (Px): partition of cost coherent with the min

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).
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Px for x = 0.3

Maël Forcier Élucubrations scientifiques 17/10/2022 19 / 52



N (Px): partition of cost coherent with the min

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

−c1

−c2

Cost −c and N (Px) for x = 0.3

x1

x2

Px for x = 0.3
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Maël Forcier Élucubrations scientifiques 17/10/2022 19 / 52



N (Px): partition of cost coherent with the min

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px), −c 7→ arg min
y∈Px

c>y is constant for all −c ∈ ri(N).

−c1

−c2

Cost −c and N (Px) for x = 0.3

x1

x2

•

Px for x = 0.3
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Local and universal exact quantization for c

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
1c∈− riN min

y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
1c∈− riNc>

]
yN(x)

=
∑

N∈N (Px )

pN čN
>yN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

For N ∈ N (Px),

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]

where yN(x) ∈ arg miny∈Px
c>︸︷︷︸
∈− riN

y .

−c1

−c2

N (Px)

and pN čN

for x = 0.3

We replace the continuous cost c ,
by the discrete cost č .
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čN := E

[
c | c ∈ − riN

]

where yN(x) ∈ arg miny∈Px
c>︸︷︷︸
∈− riN

y .

−c1

−c2

N (Px) and pN čN for x = 0.3
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Maël Forcier Élucubrations scientifiques 17/10/2022 21 / 52



x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.2
• • •
0 0.5 1

P and Px
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Maël Forcier Élucubrations scientifiques 17/10/2022 21 / 52



x 7→ N (Px) is piecewise constant.

Px := {y | Ay + Bx 6 b} and P := {(x , y) | Ay + Bx 6 b}

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.4
• • •
0 0.5 1

P and Px
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What are the constant regions of x 7→ N (Px) ?

Proposition

There exists a collection C(P, π)
called the chamber complex whose
relative interior of cells are the
constant regions of x 7→ N (Px).

I.e, for σ ∈ C(P, π) and x , x ′ ∈ ri(σ), we

have N (Px) = N (Px′) =: Nσ

x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

−c1

−c2

Nσ for σ = [−0.5, 0]

−c1

−c2

Nσ for σ = [0, 0.5]

−c1

−c2

Nσ for σ = [0.5, 1]

−c1

−c2

Nσ for σ = [1,+∞)
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Chamber complex

Definition

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) | x∈π(F )

π(F )

P

π

x

y

Px

• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y) 7→ x .
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Maël Forcier Élucubrations scientifiques 17/10/2022 23 / 52



Common Refinement of Normal Fans
We can quantize c on each chamber.

Nσ and č

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

č>N y

For all x ′ ∈ ri(τ),

V (x ′) =
∑

N∈Nτ

pN min
y∈Px

č>N y

Nτ and č

We take the common refinement:

R :== {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈

pN min
y∈Px

č>N y
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Uniform exact quantization for c

Let’s sum up:

local exact quantization at x induced by N (Px),

x 7→ N (Px) is constant on each σ ∈ C(P, π),

local exact quantization at ri(σ) induced by Nσ,

local exact quantization at ri(σ) ∪ ri(τ) induced by Nσ ∧Nτ .

Theorem (FGL21, Uniform and universal quantization of the cost)

Let R =
∧

σ∈C(P,π)

−Nσ, then for all x ∈ Rn

V (x) =
∑
R∈R

p̌R min
y∈Px

č>R y

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
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Polyhedral characterization of V

Theorem (FGL21)

For all distributions of c , V is affine on each cell of C(P, π).

Theorem (FGL21)

Under an affine change of variable, V is the support function of E

V (x) = σE
(
b − Bx

)
= sup

λ∈E
(b − Bx)>λ

where E := E
[
Dc
]

=
∫
DcP(dc) is the weighted fiber polyhedron

and Dc :=
{
λ |A>λ+ c = 0

}
the dual admissible set.

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527–549, 1992.

Maël Forcier Élucubrations scientifiques 17/10/2022 26 / 52



Polyhedral characterization of V

Theorem (FGL21)

For all distributions of c , V is affine on each cell of C(P, π).

Theorem (FGL21)

Under an affine change of variable, V is the support function of E

V (x) = σE
(
b − Bx

)
= sup

λ∈E
(b − Bx)>λ

where E := E
[
Dc
]

=
∫
DcP(dc) is the weighted fiber polyhedron

and Dc :=
{
λ |A>λ+ c = 0

}
the dual admissible set.

Extension of fiber polytope of

L. Billera, B. Sturmfels, Fiber polytopes, Annals of Mathematics, p527–549, 1992.
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Maël Forcier Élucubrations scientifiques 17/10/2022 26 / 52



Explicit computation of the example

V (x) = E


min
y∈R2

c>y

s.t. ‖y‖1 6 1

y1 6 x

y2 6 x

 x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

x

V (x)
-0.5 0 0.5 1

θ2e−θ‖c‖1

4 dc

Different distributions of c :
uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖2

2
2γ2

2πγ2 dc

Maël Forcier Élucubrations scientifiques 17/10/2022 27 / 52



Contents

1 Local and Universal Exact Quantization for cost in 2-stage

2 Uniform and Universal Exact Quantization for cost in 2-stage

3 Uniform and Universal Exact Quantization for cost in multistage

4 Complexity results

5 Adaptive partition based methods
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Multistage uniform and universal exact quantization

Vt(x) = E

 min
y∈Rnt

z∈R

c>
t y + Vt+1(y)

s.t. (x , y) ∈ Pt


with Qt(x , y) := Vt+1(y) + I(x,y)∈Pt

.

å Vt affine, x 7→ N (Px) constant
on C(epi(Qt), π

x,y ,z
x )

" epi(Qt) appears in the constraint
and depends on ct+1, · · · , cT !

Vt+1 affine on Pt+1 (by assumption)

Qt := (Rnt × Pt+1) ∧ F
(
Pt

)
Pt := C(Qt , π

x,y
x )

[FGL21, Lem. 4.1]: Pt 4 C(epi(Qt), π
x,y ,z
x )

å Vt affine on Pt , N (Px) constant on Pt

x

y

z

Pt

πx,y,z
x,y

(
epi(Qt )

)

Qt

epi(Vt+1)

epi(Qt)
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x
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Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

Pt,ξ := C
(

(Rnt × Pt+1) ∧ F
(
Pt(ξ)

)
, π

xt−1,xt
xt−1

)
Pt :=

∧
ξt∈supp ξt

Pt,ξ

Theorem (FGL21)

All results generalizes to MSLP with finitely supported stochastic
constraints.

å (Vt)t are affine on universal chamber complexes,
i.e. independent of the law of (ct)t

å We have an uniform and universal exact quantization.
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Earlier and new complexity results

Volume of a polytope

2-stage linear problem

Vol
(
{z ∈ Rd |Az 6 b}

)
or

Vol
(

Conv(v1, · · · , vn)
)

min
x∈Rn

c>x + E

min
y∈Rm

q>y

s.t. Tx + Wy 6 h


s.t. Ax 6 b

]P-complete:
Dyer and Frieze (1988)

Polynomial for fixed dimension
d : Lawrence (1991)
t t
t

]P-hard: Hanasusanto, Kuhn
and Wiesemann (2016)

Polynomial for fixed m

:
FGL (2021)
 Exact case
 Approximated case
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Complexity result multistage

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T , n2, · · · , nT , are fixed.1

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that either asserts that MSLP is unfeasible
or finds an ε-solution in polynomial time in log( 1

ε ) with probability 1.

å Can be adapted to exact complexity when we can compute exactly
E
[
c |c ∈ C , (At ,Bt ,bt)=(A,B, b)

]
and P

[
c ∈ C |(At ,Bt ,bt)=(A,B, b)

]
.

By SAA, we can solve MSLP, up to precision ε, in pseudo-polynomial time,
i.e. polynomial in 1

ε , with probability 1−α, when T , n1, · · · , nT are fixed.

Same with SDDP: [Lan 2020][Zhang and Sun 2020]

1No requirement for the first decision.
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2 stage stochastic linear programming (2SLP)

min
x∈Rn

+

c>x + E
[
Q(x , ξ)

]
s.t. Ax = b

where ξ = (T ,h) is random whereas q and W are deterministic1

Q(x , ξ) := min
y∈Rm

+

q>y

s.t. Tx + Wy = h

= max
λ∈Rn

(h − Tx)>λ

s.t. W>λ 6 q
We define

X := {x ∈ Rn
+ | Ax = b} D := {λ ∈ Rl |W>λ 6 q}

No direct formula to compute V (x) := E
[
Q(x , ξ)

]
even for fixed x .

 need to discretize ξ

1Can be extended to generic random q, and finitely supported W
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Maël Forcier Élucubrations scientifiques 17/10/2022 32 / 52



2 stage stochastic linear programming (2SLP)

min
x∈Rn

+

c>x + E
[
Q(x , ξ)

]
s.t. Ax = b

where ξ = (T ,h) is random whereas q and W are deterministic1

Q(x , ξ) := min
y∈Rm

+

q>y

s.t. Tx + Wy = h

= max
λ∈Rn

(h − Tx)>λ

s.t. W>λ 6 q
We define

X := {x ∈ Rn
+ | Ax = b} D := {λ ∈ Rl |W>λ 6 q}

No direct formula to compute V (x) := E
[
Q(x , ξ)

]
even for fixed x .

 need to discretize ξ

1Can be extended to generic random q, and finitely supported W
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Partitioning the cost-to-go function

ξ continuous SAA N = 20 Partition-based

V (x) = E
[
Q
(
x , ξ
)]

V SAA
N (x) =

1

N

N∑
k=1

Q
(
x , ξk

) VP(x)

Definition (Partitioned expected-cost-go )

Let P be a P-partition of Ξ, we define

VP(x) :=
∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])
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Properties of partitioned cost-to-go
Recall that

V (x) = E
[
Q(x , ξ)

]
VP(x) =

∑
P∈P

P
[
P
]
Q
(
x ,E

[
ξ|P
])

Q(x , ·) is convex  VP 6 V .

Q
(
·,E
[
ξ|P
])

is polyhedral  VP is
polyhedral.

VP(x)

V (x)

x

Finally,
min
x∈X

c>x + VP(x) (2SLPP)

is equivalent to

min
x∈X ,(yP)P∈P

c>x +
∑
P∈P

P
[
P
]
q>yP

E
[
T |P

]
x + WyP 6 E

[
h|P

]
∀P ∈ P
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Adapted partition

Definition

We say that a partition P is adapted
to x0 if

VP(x0) = V (x0) := E
[
Q(x0, ξ)

] VP(x)

V (x)

x
x0

Definition

An partition oracle is a function taking a first stage decision xk as
argument and returning an partition of Ξ.

Definition

An adapted partition oracle is a function taking a first stage decision xk as
argument and returning an adapted to xk partition of Ξ.
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Refinement

R refines P (R 4 P) if

∀R ∈ R,∃P ∈ P,R ⊂ P

[R 4P P if R refines P up to P-null sets.]

Then, R 4P P ⇒ VR > VP

The common refinement of P and P ′ is

P ∧ P ′ := {P ∩ P ′ |P ∈ P,P ′ ∈ P ′}

Since P ∧ P ′ refines P and P ′

max(VP ,VP′) 6 VP∧P′

P R

P P ′

P ∧ P ′
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General framework for APM

k ← 0, z0
U ← +∞, z0

L ← −∞, P0 ← {Ξ} ;

while zkU − zkL > ε do
k ← k + 1;

Solve (for xk) zkL ← min
x∈X

c>x + VPk−1(x) ;

Pxk ← Oracle(xk) ;

Pk ← Pk−1 ∧ Pxk ;

zkU ← min
(
zk−1
U , c>xk + VPk (xk)

)
;

end
Algorithm 1: Generic framework for APM.

Theorem (FL2021)

If the oracle is adapted, then xk is an ε-solution of problem (2SLP) for

k >

(
Ldiam(X )

ε
+ 1

)n

.
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Previous APM methods

Lemma (Song & Luedtke)

Let P a partition of Ξ. P is adapted at x iff for all set of scenarios P ∈ P, there
exists a common optimal multiplier λP , i.e.

∀P ∈ P, ∃λP ∈ D, ∀ξk ∈ P, λP ∈ argmax
λ∈D

(hk − T kx)>λ

Lemma (Ramirez-Pico & Moreno)

Let P a partition of Ξ. If there exists λ(ξ) such that, for all P ∈ P,

E
[
h|P

]>E[λ(ξ)|P
]

= E
[
h>λ(ξ)|P

]
x>E

[
T |P

]>E[λ(ξ)|P
]

= x>E
[
T>λ(ξ)|P

]
then P is an adapted partition.
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A (partial) comparison between partition based results

Paper Song, Luedtke Ramirez-Pico, Forcier, L.
(2015) Moreno (2020) (2021)

Non-finite supp(ξ) × X X
Explicit oracle X × X

Proof of convergence X × X
Complexity result × × X

Fast iteration X × ×
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Local exact quantization and adapted partition
Local exact quantization
random cost

GAPM
random constraints

Recall that for a fixed x ,

E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

where,

pN := P
[
c ∈ − riN

]
čN := E

[
c | c ∈ − riN

]
Px := {y ∈ Rm |Ay + Bx 6 b}

Similarly, for a given q, and all x ,

V (x) := E
[
Q(x , ξ)

]
= E

[
max
λ∈Dq

l
(h − Tx)>λ

]
=

∑
N∈N (Dq)

pN max
λ∈Dq

ψN,x
>λ

where,

pN := P
[
h − Tx ∈ riN

]
ψN,x := E

[
h − Tx | h − Tx ∈ riN

]
Dq := {λ ∈ Rl |W>λ 6 q}
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An explicit adapted partition
Consider x ∈ Rn and N ∈ N (Dq) a normal cone of Dq. We define

EN,x := {ξ ∈ Ξ | h − Tx ∈ riN}

Theorem (FL 2021)

Rx :=
{
EN,x | N ∈ N (Dq)

}
is an adapted partition to x

i.e. VRx (x) = V (x)

Proof:

V (x) := E
[
Q(x , ξ)

]
=

∑
N∈N (D)

P
[
h − Tx ∈ riN

]
min
λ∈D

E
[
h − Tx |h − Tx ∈ riN

]>
λ

=
∑

N∈N (D)

P
[
ξ ∈ EN,x

]
Q
(
E
[
ξ |ξ ∈ EN,x

]
, x
)

= VRx (x)

å Is it the coarsest one ?
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CNS conditions for a partition to be adapted

Theorem (FL 2021)

For x ∈ Rn and P a partition of Ξ, there exists Rx <P Rx such that

P 4P Rx ⇐⇒ VP(x) = V (x).

If ξ admits a density, Rx =P Rx .

An oracle is adapted if and only if it returns a partition P refining Rx .

•
Rx

•
P

•
P ′

••

Rx

EN,x := {ξ ∈ Ξ | h − Tx ∈ ri(N)}
Rx :=

{
EN,x | N ∈ N (Dq)

} EN,x := {ξ ∈ Ξ | h − Tx ∈ N}
Rx :=

{
EN,x | N ∈ N (Dq)max}.
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Stochastic cost and recourse

We have shown a local exact quantization result for random T ,h,
and deterministic q,W .

If q and W are finitely supported random variable:
1 compute an exact quantization Nξ for every element of the support;
2 take the common refinement.

We have seen that we can deal with non-finitely supported q through the
chamber complexes.

å Can we do the same here ?
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Adapted partition for general q

We define coupling constraint and fiber for the dual.

Dq :=
{
λ ∈ R` | W>λ 6 q

}
∆ :=

{
(λ, q) ∈ R` × Rm | W>λ 6 q

}
Rx ,q :=

{
EN,x | N ∈ N (Dq)

}
Recall that q 7→ N (Dq) is piecewise constant on C(∆, πλ,qλ ) and so is Rx ,q.
å we can take the common refinement of a finite number of Rx ,q !!

More precisely:

The chamber complex C(∆, πλ,qλ ) = Σ -fan(W )2.

For S ∈ Σ -fan(W ) define Rx ,S := Rx ,q for any q ∈ ri(S).

å
{

ri(S)× R |S ∈ Σ -fan(W ),R ∈ Rx ,S

}
is an adapted partition to x .

2The well studied secondary fan of W
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Maël Forcier Élucubrations scientifiques 17/10/2022 44 / 52



Adapted partition for general q

We define coupling constraint and fiber for the dual.

Dq :=
{
λ ∈ R` | W>λ 6 q

}
∆ :=

{
(λ, q) ∈ R` × Rm | W>λ 6 q

}
Rx ,q :=

{
EN,x | N ∈ N (Dq)

}
Recall that q 7→ N (Dq) is piecewise constant on C(∆, πλ,qλ ) and so is Rx ,q.
å we can take the common refinement of a finite number of Rx ,q !!

More precisely:

The chamber complex C(∆, πλ,qλ ) = Σ -fan(W )2.

For S ∈ Σ -fan(W ) define Rx ,S := Rx ,q for any q ∈ ri(S).

å
{

ri(S)× R |S ∈ Σ -fan(W ),R ∈ Rx ,S

}
is an adapted partition to x .

2The well studied secondary fan of W
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Synthesis of local and uniform quantization results

W (T ,h) q
Local ∅ Rx N (Px)

Uniform ∅ ∅
∧

σ∈C(P,π)

Nσ
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Subgradient of partition function

Recall that if P 4P Rx then

VRx (x) = VP(x) = V (x)

VRx (·) 6 VP(·) 6 V (·)

Lemma

Let x ∈ dom(V ) and P be a refinement of Rx , i.e. P 4 Rx , then

∂VRx (x) ⊂ ∂VP(x) ⊂ ∂V (x)

Furthermore, if x ∈ ri dom(V ),

∂VRx (x) = ∂VP(x) = ∂V (x)
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Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

x0
x

V (x)

X
x0

x
X

V (x)

VP(x)

Theorem (Convergence and complexity results)

If X ∩ dom(V ) ⊂ R+ is contained in a ball of diameter M ∈ R+ and
x → c>x + V (x) is Lipschitz with constant L
then the partition based method finds an ε-solution in at most

(
LM
ε + 1

)n
iterations.
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Maël Forcier Élucubrations scientifiques 17/10/2022 47 / 52



Link with Benders decomposition and L-shaped

Partition based method can be seen as a tangent cone method: a cutting
plane method where we add all active cuts instead of a single one.

x0 x0x1 x2
x

V (x)

X
x0 x0x1 x2

x
X

V (x)

VP(x)

Theorem (Convergence and complexity results)

If X ∩ dom(V ) ⊂ R+ is contained in a ball of diameter M ∈ R+ and
x → c>x + V (x) is Lipschitz with constant L
then the partition based method finds an ε-solution in at most

(
LM
ε + 1

)n
iterations.
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Maël Forcier Élucubrations scientifiques 17/10/2022 47 / 52



Explicit formulas for usual distributions

Recall that VP(x) =
∑

P∈P P
[
P
]
Q
(
x ,E

[
ξ|P
])

.

Thus, we need to compute P
[
C
]

and E
[
ξ |C

]
when C is a polyhedron.

Fortunately we have some explicit formulas, valid for S full dimensional
simplex or simplicial cone, which can be used through triangulation.

Distribution Uniform on polytope Exponential Gaussian

dP(ξ)
1ξ∈Q

Vold (Q)
LAff(Q)(dξ)

eθ
>ξ1ξ∈K
ΦK (θ)

LAff(K)(dξ) e
− 1

2
ξ>M−2ξ

(2π)
m
2 det M

dξ

Support Polytope : Q Cone : K Rm

P
[
S
] Vold (S)

Vold (Q)

| det(Ray(S))|
ΦK (θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
ξ | S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ( m+1

2
)

Γ( m
2

)
M Ctr

(
S ∩ Sm−1

)
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Numerical Results - LandS

Results given by GAPM for LandS problem3

3illustration from Ramirez-Pico and Moreno
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Numerical Results - ProdMix

k xk zkL zkU Gap |Pmax
k |

1 (1333.33, 66.67) −18666.67 −16939.71 9.3% 4

2 (1441.41, 59.57) −17873.01 −17383.73 2.7% 9

3 (1399.05, 57.91) −17789.88 −17659.19 0.74% 16

4 (1379.98, 56.64) −17744.67 −17708.00 0.20% 25

5 (1371.36, 55.71) −17718.96 −17709.05 0.056% 36

6 (1375.55, 56.21) −17713.74 −17711.37 0.013% 49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100
times, each with 10 000 scenarios randomly drawn, yielding a 95%
confidence interval centered in −17711, with radius 2.2.
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Conclusion and applications

Uniform and universal exact quantization for an MSLP

å New complexity results.

Unfortunately this quantization might be very large.

Local exact quantization for c
å Higher order simplex algorithm on the chamber complex for 2SLP.

Local exact quantization for B and b.

å Adaptive Partition-based Methods (APM) for general distribution:
solves small 2SLP with high precision.

Extension of Stochastic Dual Dynamic Programming algorithms for
non finitely supported distribution.

Links with fundamental polyhedral geometry, regular subdivisions and
fiber polytope.
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Thank you for listening ! Any question ?

M. Forcier, S. Gaubert, V. Leclère
Exact quantization of multistage stochastic
linear problems.
arXiv preprint arXiv:2107.09566 (2021).

M. Forcier, V. Leclère
Generalized adaptive partition-based method for
two-stage stochastic linear programs:
convergence and generalization.
Operation Research Letters, to appear (2022).

M. Forcier, V. Leclère
Convergence of Trajectory Following Dynamic
Programming algorithms for multistage
stochastic problems without finite support
assumptions
HAL Id : hal-03683697 (2022).
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