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Multistage stochastic linear programming (MSLP)

min
(xt)t∈[T ]

E
[ T∑
t=1

c>t xt
]

s.t. Atxt + Btxt−1 6 bt ∀t ∈ [T ]

xt random variable in Rnt ∀t ∈ [T ]

σ(xt) ⊂ σ(ck ,Ak ,Bk ,bk)k6t ∀t ∈ [T ]

x0 ≡ x0 given

where ct ∈ Rnt , At ∈ Rqt×nt−1 ,Bt ∈ Rqt×nt and bt ∈ Rqt are given
random variables.
(ct ,At ,Bt ,bt)t∈[T ] is an independent sequence.

We set VT+1 ≡ 0 and:

Vt(xt−1) := E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt
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Quantization of a MSLP

The random variable (ct ,At ,Bt ,bt)t∈[T ] are often replaced by a discrete
distribution on a finite number of scenarios

Vt(xt−1) ' Ṽt(xt−1) =
K∑

k=1

pk
min

xt∈Rnt
c>t,kxt + Vt+1(xt)

s.t. At,kxt + Bt,kxt−1 6 bt,k

Scenario drawn by Monte Carlo : Sample Average Approximation

Definition

We say that an MSLP admits an exact quantization if there exists a
finitely supported (čt , Ǎt , B̌t , b̌t)t∈[T ] that yields the same expected
cost-to-go functions, (Vt)t∈[T ]. In particular the MSLP is equivalent to a
problem on a finite scenario tree.
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Reformulation of V (x) highlighting the role of the fiber Px

For a given x ,

V (x) := E

min
y∈Rm

c>y

s.t. Ax + By 6 b


V (x) = E

[
min
y∈Px

c>y
]

where Px := {y ∈ Rm | Ax + By 6 b}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1, y1 6 x , y2 6 x}

y1

y2

Px for x = 0.8

y1

y2

Px for x = 0.3
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Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 4 / 25



Reformulation of V (x) highlighting the role of the fiber Px

For a given x ,

V (x) := E

min
y∈Rm

c>y

s.t. Ax + By 6 b


V (x) = E

[
min
y∈Px

c>y
]

where Px := {y ∈ Rm | Ax + By 6 b}

Illustrative running example:

Px := {y ∈ Rm | ‖y‖1 6 1, y1 6 x , y2 6 x}

y1

y2

Px for x = 0.8

y1

y2

Px for x = 0.3
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Normal fan N (Px)

Definition

The normal fan of the fiber Px is

N (Px) := {NPx (y) | y ∈ Px}

with NPx (y) = {c | ∀y ′ ∈ Px , c
>(y ′− y) 6 0} the normal cone of Px on y .

Proposition

If Px is bounded, {ri(N) |N ∈ N (Px)} is a partition of Rm.

−c1

−c2

•

NPx (y) for x = 0.3

• y1

y2

Px y and NPx (y) for x = 0.3
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N (Px): partition of cost coherent with the min
For a given x , we have

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px) and −c → arg miny∈Px
c>y is constant for all

−c ∈ ri(N).

arg miny∈Px
c>y is a face of Px .

−c1

−c2

Cost −c and N (Px) for x = 0.3

y1

y2

•

•

Px for x = 0.3
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Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 6 / 25



N (Px): partition of cost coherent with the min
For a given x , we have

V (x) = E
[

min
y∈Px

c>y
]

For any N ∈ N (Px) and −c → arg miny∈Px
c>y is constant for all

−c ∈ ri(N).

arg miny∈Px
c>y is a face of Px .

−c1

−c2

Cost −c and N (Px) for x = 0.3

y1

y2

•

Px for x = 0.3
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Reduction to a finite sum

For a fixed x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
c>1c∈− riN

]
yN(x)

where yN(x) ∈ arg miny∈Px
c>y for any c ∈ ri(N).

−c1

−c2

N (Px) for x = 0.3

y1

y2

Px and N (Px) for x = 0.3
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General cost c is equivalent to discrete cost č for given x
For a fixed x ,

V (x) = E
[

min
y∈Px

c>y
]

=
∑

N∈N (Px )

E
[
c>1c∈− riN

]
yN(x)

=
∑

N∈N (Px )

pN čN
>yN(x)

=
∑

N∈N (Px )

pN min
y∈Px

čN
>y

For N ∈ N (Px),

pN := P
[
c ∈ − riN

]
čN := E

[
c|c ∈ − riN

]

−c1

−c2

N (Px)

and pN čN

for x = 0.3

We draw a continuous cost c.

we draw a discrete cost č indexed by
the finite collection N (Px).
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N (Px) and pN čN for x = 0.3

Instead of drawing a general c,
we draw a discrete cost č indexed by
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = −0.4

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.4

P and Px
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4
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P and Px
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.4
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.5
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.6

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1
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x = −0.4
x = 1.4x = 0.6

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.7

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1
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x = −0.4
x = 1.4x = 0.7

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.8

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.8

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.9

−c1

−c2

N (Px)

y1

y2

Px and N (Px)
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y1
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x = −0.4
x = 1.4x = 0.9

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1.1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1.1

P and Px

Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 9 / 25



N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1.2

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1.2

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1.3

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1
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x = −0.4
x = 1.4x = 1.3

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}
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N (Px) is piecewise constant with x .
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1.2
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1.1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1.1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 1
•

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.9

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.9
•1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.8

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.8
•1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.7

−c1

−c2

N (Px)

y1

y2

Px and N (Px)
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x = −0.4
x = 1.4x = 0.7
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P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.6

−c1

−c2

N (Px)

y1

y2
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.5

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.5

• •0.5 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.4

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4x = 0.4

• •0.5 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.3
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.2

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = 0.2
• •0.5 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0.1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = 0.1
• •0.5 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = 0

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = 0
• • •
0 0.5 1

P and Px
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = −0.1

−c1

−c2

N (Px)

y1

y2

Px and N (Px)
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y2

x = −0.4
x = 1.4

x = −0.1
• • •
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = −0.2

−c1

−c2

N (Px)

y1

y2

Px and N (Px)
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x = −0.4
x = 1.4

x = −0.2
• • •
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N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = −0.3

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.3
• • •
0 0.5 1
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Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 9 / 25



N (Px) is piecewise constant with x .

P := {(x , y) | Ax + By 6 b} and Px := {y | Ax + By 6 b}

x = −0.4

−c1

−c2

N (Px)

y1

y2

Px and N (Px)

x

y1

y2

x = −0.4
x = 1.4

x = −0.4
• • •
0 0.5 1

P and Px
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What are the constant regions of N (Px) ?

Lemma

There exists a collection C(P, π)
called the chamber complex whose
relative interior of cells are the
constant regions of x → N (Px).

For σ ∈ C(P, π) and x , x ′ ∈ ri(σ),
N (Px) = N (Px ′) =: Nσ

x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

−c1

−c2

Nσ for σ = [−0.5, 0]

−c1

−c2

Nσ for σ = [0, 0.5]

−c1

−c2

Nσ for σ = [0.5, 1]

−c1

−c2

Nσ for σ = [1,+∞)
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Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}

where

σP,π(x) :=
⋂

F∈F(P) s.t. x∈π(F )

π(F )

P

π

x

y

Px

• •π(P)

where F(P) is the set of faces of P
and π is the projection (x , y)→ x

π(E ) := {x ∈ Rn | ∃y ∈ Rm, (x , y) ∈ E}
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Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 11 / 25



Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is

C(P, π) := {σP,π(x) | x ∈ π(P)}
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Chamber complex

Definition (Billera, Sturmfels 92)

The chamber complex C(P, π) of P
along π is
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Common Refinement of Normal Fans

We can quantize c on each chamber.

Nσ and č

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

čN
>y

For all x ∈ ri(τ),

V (x) =
∑

N∈Nτ

pN min
y∈Px

čN
>y

Nτ and č

We take the common refinement:

R :== {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈

pN min
y∈Px

č>N y
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We can quantize c on each chamber.

Nσ

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

č>N y

For all x ∈ ri(τ),

V (x) =
∑

N∈Nτ

pN min
y∈Px

č>N y

Nτ

We take the common refinement:

R := Nσ ∧Nτ = {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

Nσ ∧Nτ

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑

N∈Nσ∧Nτ

pN min
y∈Px

č>N y
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Common Refinement of Normal Fans
We can quantize c on each chamber.

Nσ

For all x ∈ ri(σ),

V (x) =
∑

N∈Nσ

pN min
y∈Px

č>N y

For all x ∈ ri(τ),

V (x) =
∑

N∈Nτ

pN min
y∈Px

č>N y

Nτ

We take the common refinement:

R := Nσ ∧Nτ = {N ∩ N ′ |N ∈ Nσ,N ′ ∈ Nτ}

NσNτR

For all x ∈ ri(σ) ∪ ri(τ),

V (x) =
∑
N∈R

pN min
y∈Px

č>N y
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General cost c is equivalent to discrete cost č for all x

Theorem (Quantization of the cost distribution)

Let R =
∧
σ∈C(P,π)−Nσ, then for all x ∈ Rn

V (x) =
∑
R∈R

p̌R min
y∈Px

č>R y

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
Moreover, for all distributions of c,
V is affine on each cell of the chamber complex C(P, π).

Bonus: This quantization method works for every distribution of c !
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Extension to multistage and stochastic constraints

Theorem

All results generalize to stochastic constraints with finite support and
multistage

 The regions where (Vt)t is affine do not depend on the (ct)t

 We have an exact discretization method working for all (ct)t

Idea of the proof :
Iterated chamber complexes

Pt,ξ := C(Rnt × Pt+1 ∧ F
(
Pt(ξ)

)
, π

xt−1,xt
xt−1 )

Pt :=
∧

ξt∈supp ξt

Pt,ξ
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Explicit computation of the example

V (x) = E


min
y∈R2

c>y

s.t. ‖y‖1 6 1

y1 6 x

y2 6 x

 x

y1

y2

• • • •−0.5 0 0.5 1 C(P, π)

x

V (x)
-0.5 0 0.5 1

θ2e−θ‖c‖1

4 dc

Different distributions of c:

uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖2

2
2γ2

2πγ2 dc
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Explicit formulas for usual distributions

Distribution Uniform on polytope Exponential Gaussian

dP(c)
1c∈Q

Vold (Q)
dLAff(Q)(c)

eθ
>c1c∈K
ΦK (θ)

dLAff(K)c
e
− 1

2
c>M−2c

(2π)
m
2 det M

dc

Support Polytope : Q Cone : K Rm

P
[
c ∈ S

] Vold (S)

Vold (Q)

| det(Ray(S))|
ΦK (θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
c | c ∈ S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ( m+1

2
)

Γ( m
2

)
M Ctr

(
S ∩ Sm−1

)

These formulas are valid for S full dimensional simplex or simplicial cone.
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Dual problem

V (x) := E

 inf
y

c>y

s.t. Ax + By 6 b

 = E
[

inf
y∈Px

c>y
]

where Px = {x | Ax + By 6 b}

V (x) := E


sup
µ

(Ax − b)>µ

s.t. B>µ+ c = 0

µ > 0

 = E
[

sup
µ∈Dc

(Ax − b)>µ
]

where Dc = {µ | B>µ+ c = 0, µ > 0}
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Fiber Polyhedron
Minkowski sum :

E + F = {x + x ′ |x ∈ E , x ′ ∈ F}

Definition

The fiber polyhedron E of the bundle (Dc)c∈supp(c) is the Minkowsky integral of
all the fiber at c when c varies according to its probability distribution:

E :=

∫
DcP(dc) =

{∫
µ(c)P(dc) |µ(c) ∈ Dc a.s., µ ∈ L∞(Rm,Rl)

}

V (x) = E
[

sup
µ∈Dc

(Ax − b)>µ
]

=

{
supµ(·) (Ax − b)>E

[
µ(c)

]
s.t. µ(c) ∈ Dc a.s.

= sup
λ∈E

(Ax − b)>λ

= σE (Ax − b)
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The Fiber Polyhedron is a finite Minkowski sum

Theorem
There exists a chamber complex R depending on A such that

E =

∫
DcP(dc) =

∑
R∈R

p̌RDčR

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
.

Alternative proof of the quantization result

V (x) = σE (Ax − b) =
∑
R∈R

p̌RσDčR
(Ax − b) =

∑
R∈R

p̌R min
y∈Px

č>R y
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č>R y
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Nested Fiber Polyhedra for Multistage

Vt(xt−1) = E

 min
xt∈Rnt

c>t xt + Vt+1(xt)

s.t. Atxt + Btxt−1 6 bt


Definition
We define by induction the following nested fiber polyhedra

Dt,ct := {µt |µt > 0,A>t µt + ct = 0} ∀t ∈ [T ]

FT ,cT := DT ,cT

Et := E
[
Ft,ct

]
∀t ∈ [T ]

Ft,ct := {(µt , λ[t+1:T ]) |µt ∈ Dt,ct+B>t+1λt+1
, λ[t+1:T ] ∈ Et+1} ∀t ∈ [T − 1]

Vt(xt−1) = σEt (Btxt−1 − bt ,−b[t+1:T ])
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2-time scale MSLP reduced to Quadratic Problem
We consider a MSLP where the dynamic depends on parameters p we have to
optimize

min
p∈Rm,(xt)∈Rnt

q>p + E
[ T∑
t=1

c>t xt
]

s.t. Dp 6 d

Atxt + Btxt−1 + Ctp 6 ht a.s. ∀t ∈ [T ]

xt ≺ σ(c1, · · · , ct) ∀t ∈ [T ]

If we know the fiber polyhedron, it reduces to a finite dimensional quadratic
problem

sup
p∈Rm,(λt)t∈[T ]

− q>p +
T∑
t=1

(Ctp − ht)
>λt

s.t. Dp 6 d

(λ1, · · · , λT ) ∈ E1
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Earlier and new complexity results

Volume of a polytope 2-stage linear problem

Vol
(
{z ∈ Rd |Az 6 b}

)
or

Vol
(

Conv(v1, · · · , vn)
) min

x∈Rn
c>0 x + IAx6b

+ E
[

min
y∈Rm

c>y + ITx+Wy6h

]

� ]P-complete:
Dyer and Frieze (1988)

� Polynomial for fixed dimension d :
Barvinok (1994)

� ]P-hard: Hanasusanto, Kuhn and
Wiesemann (2016)

� Polynomial for fixed m ?

:
FGL (2020)
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Complexity result multistage

We can generalize to multistage by fixing several dimensions and the horizon.

Theorem (MSLP is polynomial for fixed dimensions)

Assume that T > 3, n2, . . . , nT , ]
(

supp(A2,B2,b2)
)
, · · · ,]

(
supp(AT ,BT ,bT )

)
are fixed integers

and for all t ∈ [T ], ct conditionally to {(At ,Bt ,bt) = (A,B, b)} is easily
computable.

Then, we can solve MSLP in polynomial time.
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Conclusion

• MSLP with arbitrary cost distribution can be exactly discretized;

• new algebraic insights on the polyhedral structure of MSLP;

• analytical formulas for some usual distributions;

• fixed-parameter versions of 2SLP and MSLP are polynomial time.

Perspectives

 New algorithms from the algebraic structure

 Sensibility analysis to the distribution, link with nested distance;

 Extend to integer stochastic problems;

 Distributionnally robust optimization.
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Thank you for listening ! Any question ?

� Maël Forcier, Stéphane Gaubert and Vincent Leclère, The Polyhedral
Structure and Complexity of Multistage Stochastic Linear Problem with
General Cost Distribution,
https://hal.archives-ouvertes.fr/hal-02929361.

Maël Forcier MSLP and Polyhedral Geometry July 2nd, 2021 25 / 25

https://hal.archives-ouvertes.fr/hal-02929361

	Exact Quantization Result
	Fixed state x and normal fan
	Variable state x and chamber complex

	Fiber Polyhedron
	Complexity results
	References

